2-BLOCKS AND 2-MODULAR CHARACTERS OF THE CHEVALLEY GROUPS $G_{2}(q)$

GERHARD HISS AND JOSEPHINE SHAMASH

Abstract

We first determine the distribution of the ordinary irreducible characters of the exceptional Chevalley group $G_{2}(q), q$ odd, into 2-blocks. This is done by using the method of central characters. Then all but two of the irreducible 2-modular characters are determined. The results are given in the form of decomposition matrices. The methods here involve concepts from modular representation theory and symbolic computations with the computer algebra system MAPLE. As a corollary, the smallest degree of a faithful representation of $G_{2}(q), q$ odd, over a field of characteristic 2 is obtained.

1. Introduction

This paper continues the investigations of the modular characters of the finite Chevalley groups $G=G_{2}(q)$. In a series of papers [12, 13, 14, 15, 7, 8] the authors have investigated the p-blocks, the Brauer trees, and the p-modular characters for odd p. Here, we finally consider the case $p=2$ and q odd.

We determine the distribution of the ordinary characters of G into 2-blocks and all but two of the irreducible Brauer characters. A complete solution seems to be beyond the scope of the methods of this paper. However, the results are sufficient to find the minimal degree of a faithful 2-modular representation of G. In [16], White has obtained similar results for the groups $\operatorname{Sp}_{4}(q)$.

Throughout the paper, we have to distinguish between the two cases $q \equiv 1$ $(\bmod 4)$ and $q \equiv-1(\bmod 4)$. The ordinary characters of G are taken from [4, 3]. Our notation is that of Chang and Ree in [3]. The blocks are determined by using the method of central characters. With the help of lemmas from [13, 14] the distribution into blocks and the exceptional characters are calculated.

The methods for finding the decomposition matrices are much the same as those used in [7]. We determine a basic set of Brauer characters, consisting of some-but not all-of the nonexceptional characters in the block. Then we produce a large set of projective characters. The next step consists in finding a maximal linearly independent subset of these which approximates the projective indecomposables as closely as possible. This gives us a basic set of projectives. The projectives are now written in terms of this basic set. Those which require negative coefficients are used to refine the basic set.

[^0]Unfortunately, one does not know a priori which characters to induce, or which characters to tensor with, to obtain the required information. So one has to produce as many projective characters as possible to begin with. This involves a huge amount of calculations, which would not be possible without computer support. In our case these calculations were done with the help of the computer algebra system MAPLE, which was developed by the Symbolic Computation Group at the University of Waterloo. Once MAPLE has done its job and the proofs are given in the form below (§4), they can in principle be checked by hand. So nobody has to worry about how these programs work, or about the internal data structure used to represent the characters. We are sure that other exceptional groups of Lie type can be dealt with in a similar way.

2. Results

2.1. Explanation of the tables. In this section we present the 2-modular decomposition numbers of $G=G_{2}(q), q$ odd. We note that the 2-blocks differ substantially from the p-blocks where $p \neq 2$ (see [8, 13, 14]). In particular, note the exceptional families in B_{1}. We start with some explanation of the tables. The ordinary characters in a block fall naturally into two distinct sets. The first set consists of the so-called nonexceptional characters. Its members all belong to a fixed geometric conjugacy class of characters (see [2, §12.1]). In case of the principal block, the nonexceptional characters are exactly the unipotent characters lying in the block. Their restrictions to the 2 -regular conjugacy classes generate the ring of generalized Brauer characters, but in general are linearly dependent as class functions. However, a basic set can be selected from these. The decomposition of these basic set characters is given in the upper half of the decomposition matrix.

The remaining characters in a block are the so-called exceptional characters. They fall into families of characters which have the same restriction to 2-regular classes. Only one row is printed for any one family of exceptional characters in the lower half of the decomposition matrix. A family is indicated by curly brackets. The number of exceptionals in each family is printed in the last column of the decomposition matrix. The description of the exceptionals appears in §3.

The first column of the decomposition matrix gives the degrees of the ordinary characters. From these, the degrees of the irreducible Brauer characters in the block are easily derived. They are printed below the decomposition matrix.

In all of the following tables, missing entries are 0.
2.2. The case $4 \mid q-1$. Let $q \equiv 1(\bmod 4)$. Denote $q-1=2^{d} \cdot r$ and $q+1=2 r^{\prime}, r$ and r^{\prime} odd. So, $d \geq 2$ and $\left|G_{2}(q)\right|_{2}=2 d+2$.
2.2.1. The principal block B_{1}. Tables (a) and (b) give the decomposition matrix of the principal 2-block of G and the degrees of the irreducible Brauer characters, respectively.

Remarks. (i) $0 \leq \alpha \leq q-1$; if $3 \mid q$, we only get the weaker bound $0 \leq \alpha \leq 2 q$. (ii) $0 \leq \beta \leq \frac{1}{3}(q+2)$.
(iii) If 3 does not divide q, we have $\varphi_{12}(1) \geq \frac{1}{3}(q-1)^{2}(q+1)\left(q^{3}+2 q^{2}+q+3\right)$.
(iv) If $3 \mid q$, we have $\varphi_{12}(1) \geq \frac{1}{3}(q-1)^{2}\left(q^{3}+2 q^{2}+4 q+3\right)$.

Table (a)

Degrees	Char.	φ_{11}	φ_{17}	φ_{18}	φ_{13}	φ_{14}	φ_{15}	φ_{12}	No. of Char.'s
1	X_{11}	1							1
$\frac{1}{2} q(q-1)^{2}\left(q^{2}+q+1\right)$	X_{17}		1					1	1
$\frac{1}{6} q(q-1)^{2}\left(q^{2}-q+1\right)$	X_{18}			1					1
$\frac{1}{3} q\left(q^{4}+q^{2}+1\right)$	X_{13}	1			1			1	
$\frac{1}{3} q\left(q^{4}+q^{2}+1\right)$	X_{14}	1				1		1	
$\frac{1}{2} q(q+1)^{2}\left(q^{2}-q+1\right)$	X_{15}		1				1		1
q^{6}	X_{12}	1	α	β	1	1		1	1
$\frac{1}{6} q(q+1)^{2}\left(q^{2}+q+1\right)$	X_{16}			1			1		1
$\left(q^{4}+q^{2}+1\right)$	$\left\{X_{22}\right\}$	1					1		1
$q\left(q^{4}+q^{2}+1\right)$	$\left\{X_{23}\right\}$	1	1	1		1	1		1
$q\left(q^{4}+q^{2}+1\right)$	$\left\{X_{24}\right\}$	1	1	1	1		1		1
$q^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{21}\right\}$	1	α	β	1	1	1	1	1
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}^{\prime}\right\}$	2	1	1	1		2		$\frac{1}{2}\left(2^{d}-2\right)$
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}\right\}$	2	$\alpha+1$	$\beta+1$	1	2	2	1	$\frac{1}{2}\left(2^{d}-2\right)$
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 b}^{\prime}\right\}$	2	1	1		1	2		$\frac{1}{2}\left(2^{d}-2\right)$
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 b}\right\}$	2	$\alpha+1$	$\beta+1$	2	1	2	1	$\frac{1}{2}\left(2^{d}-2\right)$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$		α	β		2		1	$\frac{1}{4} 2^{d}$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{b}\right\}$		α	β	2			1	$\frac{1}{4} 2^{d}$
$(q+1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1}\right\}$	4	$\alpha+2$	$\beta+2$	2	2	4	1	$\frac{1}{12}\left(2^{d}-4\right)\left(2^{d}-2\right)$

Table (b)

Char.	Degree
φ_{11}	1
φ_{17}	$\frac{1}{2} q(q-1)^{2}\left(q^{2}+q+1\right)$
φ_{18}	$\frac{1}{6} q(q-1)^{2}\left(q^{2}-q+1\right)$
φ_{13}	$\frac{1}{3}(q-1)\left(q^{4}+q^{3}+2 q^{2}+2 q+3\right)$
φ_{14}	$\frac{1}{3}(q-1)\left(q^{4}+q^{3}+2 q^{2}+2 q+3\right)$
φ_{15}	$q^{2}\left(q^{2}+1\right)$
φ_{12}	$\frac{1}{6}(q-1)^{2}\left(6 q^{4}+(8-3 \alpha-\beta) q^{3}+(10-3 \alpha+\beta) q^{2}+(8-3 \alpha-\beta) q+6\right)$

2.2.2. The block B_{3} in case $q \equiv 1(\bmod 3)$. For this case, Tables (c) and (d) give the decomposition matrix of B_{3} and the degrees of the irreducible Brauer characters, respectively.

Table (c)

Degrees	Char.	φ_{32}	φ_{33}	φ_{31}	No. of Char.'s
$q^{3}+1$	X_{32}	1			1
$q(q+1)\left(q^{3}+1\right)$	X_{33}		1		1
$q^{3}\left(q^{3}+1\right)$	X_{31}	1		1	1
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}\right\}$	1	1	1	$2^{d}-1$
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}^{\prime}\right\}$	1	1		$2^{d}-1$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$			1	$\frac{1}{2} 2^{d}$
$(q+1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1}\right\}$	2	2	1	$\frac{1}{6}\left(2^{d}-2\right)\left(2^{d}-1\right)$

Table (d)

Char.	Degree
φ_{32}	$(q+1)\left(q^{2}-q+1\right)$
φ_{33}	$q(q+1)^{2}\left(q^{2}-q+1\right)$
φ_{31}	$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$

2.2.3. The block B_{3} in case $q \equiv-1(\bmod 3)$. For this case, Tables (e) and (f) give the decomposition matrix of B_{3} and the degrees of the irreducible Brauer characters, respectively.

Table (e)

Degrees	Char.	φ_{32}	φ_{33}	φ_{31}	No. of Char.'s
$q^{3}-1$	X_{32}	1			1
$q(q-1)\left(q^{3}-1\right)$	X_{33}		1		1
$q^{3}\left(q^{3}-1\right)$	X_{31}	1	1	1	1
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}\right\}$	1		1	1
$(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}^{\prime}\right\}$	1	1		1
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{b}\right\}$	2	1	1	$2^{d}-1$

Table (f)

Char.	Degree
φ_{32}	$(q-1)\left(q^{2}+q+1\right)$
φ_{33}	$q(q-1)^{2}\left(q^{2}+q+1\right)$
φ_{31}	$(q-1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$

Remark. The defect group of this block is a Sylow 2-subgroup of $\mathrm{SU}_{3}(q)$, the special unitary group in three dimensions, and therefore is semidihedral of order 2^{d+2}. Blocks with such defect group and decomposition matrix have been considered in [6, Lemma 11.4].
2.2.4. The blocks $B_{1 a}$. Tables (g) and (h) give the decomposition matrix for the blocks $B_{1 a}$ and the degrees of the irreducible Brauer characters, respectively.

Table (g)

Degrees	Char.	$\varphi_{1 a}^{\prime} \varphi_{1 a}$	No. of Char.'s	
$(q+1)\left(q^{4}+q^{2}+1\right)$	$X_{1 a}^{\prime}$	1		1
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$X_{1 a}$	1	1	1
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}^{\prime}\right\}$	1		$2^{d}-1$
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}\right\}$	1	1	$2^{d}-1$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$		1	$\frac{1}{2} 2^{d}$
$(q+1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1}\right\}$	2	1	$\frac{1}{2} 2^{d}\left(2^{d}-1\right)$

Table (h)

Char.	Degree
$\varphi_{1 a}^{\prime}$	$(q+1)\left(q^{4}+q^{2}+1\right)$
$\varphi_{1 a}$	$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$

Number of blocks $B_{1 a}$:
if $q \equiv 1(\bmod 3): \frac{1}{2}(r-3)$;
if $q \not \equiv 1(\bmod 3): \frac{1}{2}(r-1)$.
2.2.5. The blocks $B_{1 b}$. Replace a by b in Tables (g) and (h).

Number of blocks $B_{1 b}: \frac{1}{2}(r-1)$.
2.2.6. The blocks $B_{2 a}$. These blocks have the decomposition matrix given in Table (i).

Table (i)
$\left.\begin{array}{|c|c|c|c|}\hline \text { Degrees } & \text { Char. } & \varphi_{2 a}^{\prime} \varphi_{2 a} & \text { No. of Char.'s } \\ \hline(q-1)\left(q^{4}+q^{2}+1\right) & X_{2 a}^{\prime} & 1 & 1 \\ q(q-1)\left(q^{4}+q^{2}+1\right) & X_{2 a} & 1 & 1\end{array}\right] 1$

The degrees of the irreducible Brauer characters are given in Table (j). Number of blocks $B_{2 a}: \frac{1}{2}\left(r^{\prime}-1\right)$.

Table (j)

Char.	Degree
$\varphi_{2 a}^{\prime}$	$(q-1)\left(q^{4}+q^{2}+1\right)$
$\varphi_{2 a}$	$(q-1)^{2}\left(q^{4}+q^{2}+1\right)$

Remark. The defect group of this block is a Sylow 2-subgroup of $\mathrm{U}_{2}(q)$, the unitary group in two dimensions, and therefore is semidihedral of order 2^{d+2}. Blocks with such defect group and decomposition matrix have been considered in [5, Lemma 8.8].
2.2.7. The blocks $B_{2 b}$. Replace a by b in Tables (i) and (j).

Number of blocks $B_{2 b}$:
if $q \equiv-1(\bmod 3): \frac{1}{2}\left(r^{\prime}-3\right)$;
if $q \not \equiv-1(\bmod 3): \frac{1}{2}\left(r^{\prime}-1\right)$.
2.2.8. The blocks $B_{X_{1}}, B_{X_{2}}, B_{X_{a}}$, and $B_{X_{b}} . B_{X_{1}}$: Contains $2^{2 d}$ characters of type X_{1}.

Number of blocks:

$$
\begin{aligned}
& \text { if } q \equiv 1(\bmod 3): \frac{1}{12}(r-3)^{2} \\
& \text { if } q \not \equiv 1(\bmod 3): \frac{1}{12}(r-1)(r-5)
\end{aligned}
$$

$B_{X_{2}}$: Contains four characters of type X_{2}.
Number of blocks:

$$
\begin{aligned}
& \text { if } q \equiv-1(\bmod 3): \frac{1}{12}\left(r^{\prime}-3\right)^{2} \\
& \text { if } q \not \equiv-1(\bmod 3): \frac{1}{12}\left(r^{\prime}-1\right)\left(r^{\prime}-5\right)
\end{aligned}
$$

$B_{X_{\alpha}}, \alpha=a$ or b : Contains 2^{d+1} characters of type X_{α}.
Number of blocks: $\frac{1}{8}(r-1)(q-1)$.
These are blocks with exactly one irreducible Brauer character, and so the decomposition matrix just consists of a column of 1 's.
2.2.9. The characters X_{19}, \bar{X}_{19} and the characters of types X_{3}, X_{6} constitute blocks of defect 0 .
2.3. The case $4 \mid q+1$. Let $q \equiv-1(\bmod 4)$. Now denote $q+1=2^{d} \cdot r$ and $q-1=2 r^{\prime}, r$ and r^{\prime} odd. So, $d \geq 2$ and $\left|G_{2}(q)\right|_{2}=2 d+2$.
2.3.1. The principal block B_{1}. The principal 2-block of G has the decomposition matrix given in Table (k).

Remarks. (i) $1 \leq \alpha \leq q-1$; if $3 \mid q$, we only get the weaker bound $1 \leq \alpha \leq 2 q$.
(ii) $1 \leq \beta \leq \frac{1}{3}(q+2)$.
(iii) In case $q=3$, we have $\beta=1$. Ryba has shown, using some sophisticated extensions of Parker's MEAT-AXE, that $\alpha=2$ in this case.
(iv) If $q>3$, the degrees of the irreducible Brauer characters are the same as in the case $q \equiv 1(\bmod 4)$.

TAble (k)

Degrees	Char.	φ_{11}	φ_{17}	φ_{18}	$\varphi_{13} \varphi_{14} \varphi_{15} \varphi_{12}$	No. of Char.'s			
1	X_{11}	1							1
$\frac{1}{2} q(q-1)^{2}\left(q^{2}+q+1\right)$	X_{17}		1					1	
$\frac{1}{6} q(q-1)^{2}\left(q^{2}-q+1\right)$	X_{18}			1					1
$\frac{1}{3} q\left(q^{4}+q^{2}+1\right)$	X_{13}	1			1				1
$\frac{1}{3} q\left(q^{4}+q^{2}+1\right)$	X_{14}	1				1			1
$\frac{1}{2} q(q+1)^{2}\left(q^{2}-q+1\right)$	X_{15}		1				1		1
q^{6}	X_{12}	1	α	β	1	1		1	1
$\frac{1}{6} q(q+1)^{2}\left(q^{2}+q+1\right)$	X_{16}			1			1		1
$\left(q^{4}+q^{2}+1\right)$	$\left\{X_{22}\right\}$	1					1	1	
$q\left(q^{4}+q^{2}+1\right)$	$\left\{X_{23}\right\}$	1	1	1		1	1		1
$q\left(q^{4}+q^{2}+1\right)$	$\left\{X_{24}\right\}$	1	1	1	1		1		1
$q^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{21}\right\}$	1	α	β	1	1	1	1	1
$(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 a}^{\prime}\right\}$		1	1		1			$\frac{1}{2}\left(2^{d}-2\right)$
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 a}\right\}$		$\alpha-1 \beta-1$		1		1	$\frac{1}{2}\left(2^{d}-2\right)$	
$(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}^{\prime}\right\}$		1	1	1				$\frac{1}{2}\left(2^{d}-2\right)$
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}\right\}$		$\alpha-1$	$\beta-1$	1			1	$\frac{1}{2}\left(2^{d}-2\right)$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$		α	β		2		1	$\frac{1}{4} 2^{d}$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{b}\right\}$		α	β	2			1	$\frac{1}{4} 2^{d}$
$(q-1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2}\right\}$	$\alpha-2 \beta-2$			1	$\frac{1}{12}\left(2^{d}-4\right)\left(2^{d}-2\right)$			

2.3.2. The block B_{3} in case $q \equiv 1(\bmod 3)$. In this case, B_{3} has the decomposition matrix given in Table (1).

The degrees of the irreducible Brauer characters are as in case 2.2.2.
Table (1)

Degrees	Char.	φ_{32}	φ_{33}	φ_{31}	No. of Char.'s
$q^{3}+1$	X_{32}	1			1
$q(q+1)\left(q^{3}+1\right)$	X_{33}		1		1
$q^{3}\left(q^{3}+1\right)$	X_{31}	1		1	1
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}\right\}$	1	1	1	1
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}^{\prime}\right\}$	1	1		1
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$			1	$2^{d}-1$

Remark. The defect group of this block is a Sylow 2-subgroup of $\mathrm{SL}_{3}(q)$, the special linear group in three dimensions, and therefore is semidihedral of
order 2^{d+2}. Blocks with such defect group and decomposition matrix have been considered in [6, Lemma 11.6].
2.3.3. The block B_{3} in case $q \equiv-1(\bmod 3)$. In this case, B_{3} has the decomposition matrix given in Table (m).

Table (m)

Degrees	Char.	φ_{32}	φ_{33}	φ_{31}	No. of Char.'s
$q^{3}-1$	X_{32}	1			1
$q(q-1)\left(q^{3}-1\right)$	X_{33}		1		1
$q^{3}\left(q^{3}-1\right)$	X_{31}	1	γ	1	1
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}\right\}$	1	$\gamma-1$	1	$2^{d}-1$
$(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 b}^{\prime}\right\}$	1	1		$2^{d}-1$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{b}\right\}$	2	γ	1	$\frac{1}{2} 2^{d}$
$(q-1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2}\right\}$		$\gamma-2$	1	$\frac{1}{6}\left(2^{d}-2\right)\left(2^{d}-1\right)$

Remark. $1 \leq \gamma \leq \frac{1}{3}(q+1)$.
The degrees of the irreducible Brauer characters are given in Table (n).
Table (n)

Char.	Degree
φ_{32}	$(q-1)\left(q^{2}+q+1\right)$
φ_{33}	$q(q-1)^{2}\left(q^{2}+q+1\right)$
φ_{31}	$(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{2}+(1-\gamma) q+1\right)$

2.3.4. The blocks $B_{1 a}$. These blocks have the decomposition matrix given in Table (o).

Table (o)

Degrees	Char.	$\varphi_{1 a}^{\prime} \varphi_{1 a}$	No. of Char.'s	
$(q+1)\left(q^{4}+q^{2}+1\right)$	$X_{1 a}^{\prime}$	1	1	
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$X_{1 a}$	1	1	1
$(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}^{\prime}\right\}$	1		1
$q(q+1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1 a}\right\}$	1	1	1
$(q+1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{1}\right\}$	2	1	1
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$		1	$2^{d}-1$

The degrees of the irreducible Brauer characters are as in case 2.2.4.
Remark. The defect group of this block is a Sylow 2-subgroup of $\mathrm{GL}_{2}(q)$, the general linear group in two dimensions, and therefore is semidihedral of
order 2^{d+2}. Blocks with such defect group and decomposition matrix have been considered in [5, Lemma 8.6].
2.3.5. The blocks $B_{1 b}$. Replace a by b in Table (o).
2.3.6. The blocks $B_{2 a}$. These blocks have the decomposition matrix given in Table (p).

Table (p)

Degrees	Char.	$\varphi_{2 a}^{\prime} \varphi_{2 a}$	No. of Char.'s	
$(q-1)\left(q^{4}+q^{2}+1\right)$	$X_{2 a}^{\prime}$	1	1	
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$X_{2 a}$	1	1	1
$(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 a}^{\prime}\right\}$	1		$2^{d}-1$
$q(q-1)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2 a}\right\}$	1	1	$2^{d}-1$
$\left(q^{2}-1\right)\left(q^{4}+q^{2}+1\right)$	$\left\{X_{a}\right\}$	2	1	$\frac{1}{2} 2^{d}$
$(q-1)^{2}\left(q^{4}+q^{2}+1\right)$	$\left\{X_{2}\right\}$		1	$\frac{1}{2} 2^{d}\left(2^{d}-1\right)$

The degrees of the irreducible Brauer characters are as in case 2.2.6.
2.3.7. The blocks $B_{2 b}$. Replace a by b in Table (p).
2.3.8. The blocks $B_{X_{1}}, B_{X_{2}}, B_{X_{a}}$, and $B_{X_{b}}$. These are blocks with exactly one irreducible Brauer character, and so the decomposition matrix consists just of a column of 1 's.
Corollary. If 3 does not divide q, the smallest degree of a faithful representation of G over a field of characteristic 2 is $q^{3}+\varepsilon$, where $\varepsilon= \pm 1$ is such that $q \equiv \varepsilon$ $(\bmod 3)$. If $q=3^{f}, f \geq 2$, the smallest degree is $q^{2}(q+1)$, and if $q=3$, the smallest degree is 14 .

3. Proofs: blocks

3.1. Preliminaries. As in [8, 13, 14], the blocks are determined by examination of the central character tables $(\bmod 2)$. These are given in the Appendix for all characters of $G_{2}(q)$ of nonzero defect.

We rely on the fact that two characters are in the same 2-block if and only if they determine the same central character $(\bmod 2)$.
3.1.1. We first recall facts and notation from [3, 14]:

$$
\left|G_{2}(q)\right|=q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)
$$

The following subgroups are the maximal tori of $G_{2}(q)$:

$$
\begin{array}{ll}
H_{1} \cong C_{q-1} \times C_{q-1}, & H_{3} \cong C_{q^{2}+q+1}, \\
H_{2} \cong C_{q+1} \times C_{q+1}, & H_{6} \cong C_{q^{2}-q+1}, \\
H_{a} \cong C_{q^{2}-1} \cong H_{b} . &
\end{array}
$$

For $\alpha \in\{1,2, a, b, 3,6\}$, denote elements of H_{α} by h_{α}, and complex linear characters of H_{α} by $\pi_{\alpha} ; \hat{\pi}_{\alpha}\left(h_{\alpha}\right)$ is the sum of the images under π_{α} of the conjugates of h_{α} in H_{α}. As in the previous papers, π_{α} will usually denote a
character such that $X_{\alpha}\left(\pi_{\alpha}\right)$ is irreducible, π_{α}^{+}are of order 3 , and π_{α}^{\times}are of order 2 , and I_{α} will denote the trivial character on H_{α}. For $\alpha=a$ or b, let the characters π_{α}^{*} and $\pi_{\alpha}^{\#}$ be such that $\left(\pi_{\alpha}^{*}\right)^{q+1}=I_{\alpha}=\left(\pi_{\alpha}^{\#}\right)^{q-1}$, and $\pi_{\alpha}^{*}, \pi_{\alpha}^{\#}$ are of order >3.

We say

$$
\pi_{1} \sim(i, j)
$$

if $\pi_{1}\left(h_{1 a}\right)=\rho^{i}, \pi_{1}\left(h_{1 b}\right)=\rho^{j}$, where ρ is a primitive complex $(q-1)$ st root of unity and $h_{1 a} \in H_{1} \cap H_{a}, h_{1 b} \in H_{1} \cap H_{b}$, and $\left|h_{1 a}\right|=q-1=\left|h_{1 b}\right|$. Similarly for π_{2}, replace $q-1$ by $q+1$ and $h_{1 a}, h_{1 b}$ by $h_{2 a}, h_{2 b}$.
3.1.2. We note that for primes $p \neq 2$, the central character tables $(\bmod p)$ contain nonzero entries for the unipotent class sums. This made it easier to determine the blocks. When two central characters coincided on the unipotent class sums, we had only to find criteria as to when $\hat{\pi}_{\alpha}(h) \equiv \hat{\pi}_{\alpha}(h)(\bmod p)$ for h in a maximal torus H_{α}.

For $p=2$, however, we see that for all unipotent u we have $\omega_{\chi}(\hat{u}) \equiv 0$ $(\bmod 2)$ for all χ of nonzero defect. Hence, we need also to determine when

$$
\hat{\pi}_{\alpha}(h) \equiv \hat{\pi}_{\beta}(h) \quad(\bmod 2)
$$

for $h \in H_{\alpha} \cap H_{\beta}, H_{\alpha}$ and H_{β} different tori.
To do this, we first find some π_{α}^{\prime} such that $\hat{\pi}_{\beta}(h) \equiv \hat{\pi}_{\alpha}^{\prime}(h)(\bmod 2)$, and then we use the lemmas in [14] to get all π_{α} such that $\hat{\pi}_{\alpha}(h) \equiv \hat{\pi}_{\alpha}^{\prime}(\bmod 2)$.

The relevant lemmas (3.4,5.3, and 6.3) in [14] still hold for $p=2$. These essentially say that if χ is a character defined by π_{α} (for $\alpha \in\{a, b, 1,2\}$), and we want to find all χ^{\prime} defined by π_{α}^{\prime} such that if $\left\langle h_{\alpha}\right\rangle=H_{\alpha}$ then

$$
\begin{equation*}
\hat{\pi}_{\alpha}\left(h_{\alpha}^{p^{d} k}\right) \equiv \hat{\pi}_{\alpha}^{\prime}\left(h_{\alpha}^{p^{d} k}\right)(\bmod p) \quad \text { for all } k \tag{*}
\end{equation*}
$$

then it is sufficient to find all χ^{\prime} defined by π_{α}^{\prime} such that

$$
\pi_{\alpha}(h) \equiv \pi_{\alpha}^{\prime}(h)(\bmod p) \quad \text { for all } p \text {-regular } h \text { in } H_{\alpha}
$$

We note that an error appears in the proof of Lemma 3.4 in [14] which needs correction to allow the proof to work for $p=2$.

We needed to show that for $\alpha=a$ or b, the congruence $(*)$ holds if and only if $P_{\sigma}(x) \equiv P_{\tau}(x)(\bmod p)$. Here, $P_{\sigma}(x)=(x-\sigma)\left(x-\sigma^{-1}\right)\left(x-\sigma^{q}\right)\left(x-\sigma^{-q}\right)$, $\sigma=\pi_{\alpha}\left(h_{\alpha}^{p^{d}}\right)$, and $\tau=\pi_{\alpha}^{\prime}\left(h_{\alpha}^{p^{d}}\right)$. Then, if $A(\sigma)=\sigma+\sigma^{-1}+\sigma^{q}+\sigma^{-q}$, we have

$$
P_{\sigma}(x)=x^{4}-A(\sigma) x^{3}+\left(2+\sigma^{q+1}+\sigma^{-(q+1)}+\sigma^{q-1}+\sigma^{1-q}\right) x^{2}-A(\sigma) x+1
$$

In [14] we had an error in the coefficient for x^{2}. In fact, $\sigma^{q+1}=\pi_{\alpha}\left(h_{1 \alpha}^{p^{d}}\right)$ and $\sigma^{q-1}=\pi_{\alpha}\left(h_{2 \alpha}^{p^{d}}\right)$, and $h_{1 \alpha}$ and $h_{2 \alpha}$ have only two conjugates in H_{α}, so that

$$
\hat{\pi}_{\alpha}\left(h_{1 \alpha}^{p^{d}}\right)=\sigma^{q+1}+\sigma^{-(q+1)}, \quad \hat{\pi}_{\alpha}\left(h_{2 \alpha}^{p^{d}}\right)=\sigma^{q-1}+\sigma^{1-q}
$$

and if we replace p^{d} by 2^{d+1}, we see that the lemma holds $(\bmod 2)$.
3.1.3. $G_{2}\left(3^{k}\right)$. The central characters $(\bmod 2)$ for $G_{2}\left(3^{k}\right)$ essentially coincide with the tables for $G_{2}(q), 2,3 \nmid q$. Namely, for all unipotent $u \neq 1$ in $G_{2}\left(3^{k}\right)$ we have $\omega_{\chi}(\hat{u}) \equiv 0(\bmod 2)$ for all central characters of nonzero defect, as in the tables in the Appendix. For the remainder of the 2-regular class sums, after relabelling as in [7], these agree exactly with the tables for $G_{2}(q)$, $2,3 \nmid q$.

3.2. $q \equiv 1(\bmod 4)$.

3.2.1. The principal block B_{1}. Clearly, $X_{11}=1_{G}, X_{12}, X_{13}, X_{14}, X_{15}, X_{16}$, $X_{17}, X_{18} \in B_{1}$.

Since $\left(\pi_{1}^{\times}\right)^{2}=1$, we have $\pi_{1}^{\times}\left(h_{1}\right)= \pm 1$ for $h_{1} \in H_{1}$, so that $\pi_{1}\left(h_{1}\right) \equiv 1$ $(\bmod 2)$. This implies $X_{21}, X_{22}, X_{23}, X_{24} \in B_{1}$.

If $3 \nmid q$, we verify that $X_{31}, X_{32}, X_{33} \notin B_{1}$:
(a) If $q \equiv 1(\bmod 3)$, we would need $\hat{\pi}_{1}^{+}\left(h_{1 \alpha}\right) \equiv 0(\bmod 2)$. However, if $\left|h_{1 a}\right|=q-1$, then $\pi_{1}^{+}\left(h_{1 a}\right)=\omega$, so that

$$
\hat{\pi}_{1}^{+}\left(h_{1 a}\right)=3\left(\omega+\omega^{2}\right) \equiv 1 \quad(\bmod 2)
$$

(b) If $q \equiv-1(\bmod 3)$, then $\pi_{2}^{+}\left(h_{2 b}\right)=\omega$ for $\left|h_{2 b}\right|=q+1$, thus $\hat{\pi}_{2}^{+}\left(h_{2 b}\right) \equiv$ $1(\bmod 2)$ and so $X_{33} \notin B_{1}$.

We also have $\pi_{b}^{+}\left(h_{b}\right)=\omega$ for $\left|h_{b}\right|=q^{2}-1$. Therefore, $\pi_{b}^{+}\left(h_{2 b}\right)=\pi_{b}^{+}\left(h_{b}^{q-1}\right)$ $=\omega$ and $\pi_{b}^{+}\left(h_{2 b}\right)=\omega+\omega^{2} \equiv 1(\bmod 2)$, and so $X_{31}, X_{32} \notin B_{1}$.

We now look at the exceptional families:
$X_{1}:$ We want $(i, j) \equiv(0,0)(\bmod 2)$ as in $[14, \S 5.13]$ so that

$$
\hat{\pi}_{1}\left(h_{1 a}^{2^{d}}\right)=\hat{\pi}_{1}\left(h_{1 b}^{2^{d}}\right)=6 \equiv 0 \quad(\bmod 2)
$$

We have $\left(2^{d}-1\right)^{2}$ solutions to

$$
i=s r, \quad j=t r, \quad 1 \leq s, t \leq 2^{d}-1
$$

We exclude $2\left(2^{d}-1\right)$ pairs (s, t) such that $3 s \equiv t\left(\bmod 2^{d}\right), s \equiv t\left(\bmod 2^{d}\right)$, but these have a common solution, namely $s=t=2^{d}-1$. We also exclude $2\left(2^{d}-1\right)$ pairs (s, t) that solve $2 t \equiv 3 s\left(\bmod 2^{d}\right)$ or $2 s \equiv t\left(\bmod 2^{d}\right)$ (one solution s for each $t \neq 2^{d-1}$), so we get

$$
\left(2^{d}-1\right)^{2}-2\left(2^{d}-1\right)+1-2\left(2^{d}-2\right)=\left(2^{d}-4\right)\left(2^{d}-2\right)
$$

and dividing by 12 to get the number of X_{1} yields the result in $\S 3.2 .1$.
$X_{1 a}, X_{1 a}^{\prime}, X_{1 b}, X_{1 b}^{\prime}$: Let $\alpha=a$ or b. All $\pi_{1}^{\#_{\alpha}}$ defined by $i^{\#}$ with $i^{\#}=s r$, $1 \leq s \leq 2^{d}-1$, give $X_{1 \alpha}, X_{1 \alpha}^{\prime} \in B_{1}$, excepting $i^{\#}=2^{d-1} \cdot r$, which would be of order 2 . Since for $i^{\#} \neq 2^{d-1} \cdot r$, we have $i^{\#}$ and $-i^{\#}$ with different $\pi_{1}^{\#_{\alpha}}$ but the same $\hat{\pi}_{1}^{\#_{\alpha}}$, we get $\frac{1}{2}\left(2^{d}-2\right)$ characters $X_{1 \alpha}, X_{1 \alpha}^{\prime}$ in B_{1} as in §3.2.1.
X_{a}, X_{b} : By Lemma 3.4 in [14], if π_{α} defines $X_{\alpha} \quad(\alpha=a$ or $b)$, then

$$
X_{\alpha} \in B_{1} \Leftrightarrow \pi_{\alpha}\left(h_{\alpha}^{2^{d}+1}\right)=1
$$

So, if $\pi_{\alpha}\left(h_{\alpha}\right)=\xi^{i}$, where $\left|h_{\alpha}\right|=q^{2}-1=|\xi|$ and $\xi \in \mathbb{C}$, we need $i \equiv 0$ $\left(\bmod r r^{\prime}\right)$. However, $q+1, q-1 \nmid i$, so only odd multiples of $r r^{\prime}$ are possible. This yields $\frac{1}{2} \cdot 2^{d+1}=2^{d} \pi_{\alpha}$, and dividing by 4 , we get the number of $X_{\alpha}: 2^{d-2}$.
Claim. No characters of types $X_{2}, X_{2 a}, X_{2 a}^{\prime}, X_{2 b}, X_{2 b}^{\prime}$ are in B_{1}.
Proof. If $X_{2} \in B_{1}$, then the π_{2} defining it must satisfy $\pi_{2} \sim(i, j) \equiv(0,0)$ $\left(\bmod r^{\prime}\right)$. However, $q+1=2 r^{\prime}$, so π_{2} is of order 1 or 2 , a contradiction.

Now let $\alpha=a$ or b. For $\left|h_{\alpha}\right|=q^{2}-1$ we denote $\pi_{\alpha}^{*}\left(h_{\alpha}\right)=\xi^{(q-1) \iota^{*}}=\sigma$, where $\xi \in \mathbb{C}$ of order $q^{2}-1$ as before. We have

$$
\pi_{\alpha}\left(h_{2 \alpha}\right)=\pi_{\alpha}\left(h_{\alpha}^{q-1}\right)=\sigma^{q-1}=\sigma^{-2}
$$

Since $h_{2 \alpha}^{2}$ is of odd order, we have, if π_{α}^{*} defines $X_{2 \alpha}, X_{2 \alpha}^{\prime} \in B_{1}$,

$$
\hat{\pi}_{\alpha}\left(h_{2 \alpha}^{2}\right)=\sigma^{-4}+\sigma^{4} \equiv 0 \quad(\bmod 2)
$$

Hence, $\sigma^{ \pm 4}=1$. However, $\sigma^{q+1}=1$, so σ^{2} is of odd order and therefore $\sigma^{2}=1$, giving $\sigma= \pm 1$. But then, $\left(\pi_{\alpha}^{*}\right)^{2}=1$, which is not possible.
3.2.2. The block B_{3} if $q \equiv 1(\bmod 3)$. Let B_{3} be the block containing X_{31}, X_{32}, X_{33}.
Note. If $\left|h_{1 a}\right|=q-1=\left|h_{1 b}\right|$, we have

$$
\pi_{1}^{+}\left(h_{1 a}\right)=\omega, \quad \pi_{1}^{+}\left(h_{1 b}\right)=1
$$

so that

$$
\begin{gathered}
\hat{\pi}_{1}^{+}\left(k_{3}\right)=1+1 \equiv 0(\bmod 2) \quad \text { as } k_{3}=h_{1 b}^{(q-1) / 3} \\
\hat{\pi}_{1}^{+}\left(h_{1 b}\right)=6 \equiv 0(\bmod 2)
\end{gathered}
$$

but

$$
\omega_{3 i}\left(\hat{h}_{1 a}\right)=\hat{\pi}_{1}^{+}\left(h_{1 a}\right)=3\left(\omega+\omega^{2}\right) \equiv 1(\bmod 2) \quad \text { for } 1 \leq i \leq 3 .
$$

We also have (using [14, §5.5]) that if $h_{1} \in H_{1}-\left(H_{1 a} \cup H_{1 b}\right)$, then

$$
\hat{\pi}_{1}\left(h_{1}\right)=6\left(\omega+\omega^{2}\right) \equiv 0 \quad(\bmod 2) .
$$

We then conclude by inspection of the tables that since $\omega_{\chi}\left(\hat{h}_{1 a}\right) \equiv 0(\bmod 2)$ for χ equal to a character of one of the types $X_{2}, X_{b}, X_{2 b}, X_{2 b}^{\prime}$, these are not contained in B_{3}.

We use Lemma 5.3 from [14] to deal with $X_{1}, X_{1 a}, X_{1 a}^{\prime}, X_{1 b}, X_{1 b}^{\prime}$:
$X_{1}: X_{1} \in B_{3}$ if it is defined by $\pi_{1} \sim(i, j),(i, j) \equiv\left(\frac{r}{3}, 0\right)(\bmod r)$, gives $2^{2 d}$ pairs

$$
i=\frac{r}{3}+s r, \quad j=t r, \quad 0 \leq s, t \leq 2^{d}-1
$$

excluding solutions to

$$
\begin{cases}1+3 s \equiv 2 t & \left(\bmod 2^{d}\right) \\ 1+3 s \equiv t & \left(\bmod 2^{d}\right) \\ t=0 & \end{cases}
$$

as in [14, $\S 5.15]$.
For each s there are 2^{d} solutions t to the last two congruences. To the first there are no solutions t for odd s, but two solutions t for even s (these are t and $2^{d-1}+t$ for $\left.1 \leq t \leq 2^{d-1}\right)$. As in [14], $(s, 0)$ solves all three congruences, so we get $\left(2^{2 d}-3 \cdot 2^{d}+2\right)$ solutions π_{1} giving $\frac{1}{6}\left(2^{d}-1\right)\left(2^{d}-2\right)$ characters $X_{1} \in B_{3}$.
$X_{1 a}, X_{1 a}^{\prime}$: As in [14, §5.15], we have $2^{d}-1$ characters of these types in B_{3} defined by

$$
\pi_{1}^{\#_{a}} \sim\left(2 i^{\#}, 3 i^{\#}\right) \equiv \pm\left(\frac{r}{3}, 0\right) \quad(\bmod r)
$$

where we get

$$
i^{\#}=\frac{2 r}{3}+t r, \quad 0 \leq t \leq 2^{d}-1
$$

(excluding $t=\frac{2}{3}\left(2^{d}-1\right)$ if $2^{d} \equiv 1(\bmod 3)$ and $t=\frac{2}{3}\left(2^{d}-2\right)$ if $2^{d} \equiv-1$ $(\bmod 3))$.
$X_{1 b}, X_{1 b}^{\prime} \notin B_{3}$ as in [14, §5.15].
$X_{a}, X_{2 a}, X_{2 a}^{\prime}$: By the note at the beginning of $\S 3.2 .2$, we need to find π_{a} defining one of $X_{2 a}, X_{2 a}^{\prime}$ such that

$$
\begin{cases}\hat{\pi}_{a}\left(h_{1 a}\right) \equiv 1(\bmod 2), & \left|h_{1 a}\right|=r \\ \hat{\pi}_{a}(h) \equiv 0(\bmod 2), & h \in H_{a} \backslash H_{1 a} \text { of odd order. }\end{cases}
$$

These conditions hold for π_{a}^{+}.
Lemma. If σ, τ are of odd order and $\sigma^{q^{2}-1}=\tau^{q^{2}-1}=1$, then

$$
\sigma+\sigma^{-1} \equiv \tau+\tau^{-1} \quad(\bmod 2) \Leftrightarrow \sigma^{ \pm 1}=\tau
$$

Proof. \Leftarrow is obvious, and \Rightarrow follows from the fact that the left-hand side implies that

$$
(x-\sigma)\left(x-\sigma^{-1}\right) \equiv(x-\tau)\left(x-\tau^{-1}\right) \bmod 2,
$$

so that $\tau \equiv \sigma^{ \pm 1}(\bmod 2)$, giving also equality since they are of odd order.
Hence, if $X_{2 a}, X_{2 a}^{\prime} \in B_{3}$ are defined by π_{a}^{*} and $\pi_{a}^{*}\left(h_{a}\right)=\xi^{(q-1) i^{*}}$, then by the lemma, since $\pi_{a}^{*}\left(h_{1 a}\right) \equiv 1(\bmod 2)$, we must have $\pi_{a}^{*}\left(h_{1 a}\right)=\omega^{ \pm 1}$; but then

$$
\omega^{ \pm 1}=\pi_{a}^{*}\left(h_{1 a}\right)=\pi_{a}^{*}\left(h_{a}^{q+1}\right)=\xi^{(q-1) i^{*}(q+1)}=1,
$$

which is a contradiction.
Conclusion. $X_{2 a}, X_{2 a}^{\prime} \notin B_{3}$.
X_{a} : Again, we need π_{a} such that on odd-order elements $\pi_{a}=\pi_{a}^{+}$, and by Lemma 3.4 in [14], only such π_{a} are possible. In other words, for $\left|h_{a}\right|=q^{2}-1$ we need

$$
\pi_{a}\left(h_{a}^{2^{d}+1}\right)=\omega^{ \pm 1}
$$

so that, if $\pi_{1}\left(h_{a}\right)=\xi^{i}$, we must have

$$
i \equiv \pm \frac{1}{3} r r^{\prime} \quad\left(\bmod r r^{\prime}\right)
$$

We exclude all i divisible by $q+1$ or $q-1$, so we need $o d d$ multiples of $\frac{1}{3} r r^{\prime}$ that are not divisible by 3 . This gives us $\frac{1}{2}\left(3 \cdot 2^{d+1}\right) \cdot \frac{2}{3}=2^{d}+1$ different i, and so leaves 2^{d-1} characters X_{a} in B_{3}.
3.2.3. The block B_{3} if $q \equiv-1(\bmod 3)$. Let B_{3} be the block containing X_{31}, X_{32}. We calculate π_{b}^{+}: If $\left|h_{b}\right|=q^{2}-1$, then $\pi_{b}^{+}\left(h_{b}\right)=\omega^{ \pm 1}$, so that

$$
\hat{\pi}_{b}^{+}\left(h_{2 b}\right)=\hat{\pi}_{b}^{+}\left(h_{b}^{q-1}\right)=\omega+\omega^{2} \equiv 1 \quad(\bmod 2)
$$

and for $h \notin H_{2 b}$ one has $\hat{\pi}_{b}^{+}(h) \equiv 0(\bmod 2)$.
Hence, we have $X_{33} \in B_{3}$, since

$$
\pi_{2}^{+} \sim \pm\left(0, \frac{1}{3}(q+1)\right)
$$

so that

$$
\begin{gathered}
\hat{\pi}_{2}^{+}\left(h_{2}\right)=6\left(\omega+\omega^{2}\right) \equiv 0(\bmod 2), \quad \hat{\pi}_{2}^{+}\left(h_{2 a}\right)=6 \equiv 0(\bmod 2), \\
\hat{\pi}_{2}^{+}\left(k_{3}\right)=\hat{\pi}_{2}^{+}\left(h_{2 a}^{\frac{1}{3}(q+1)}\right) \equiv 0(\bmod 2) \quad \text { and } \quad \hat{\pi}_{2}^{+}\left(h_{2 b}\right)=3\left(\omega+\omega^{2}\right) \equiv 1(\bmod 2) .
\end{gathered}
$$

We exclude all characters χ with $\omega_{\chi}\left(\hat{h}_{2 b}\right) \equiv 0(\bmod 2)$, namely $X_{1}, X_{1 \alpha}$, $X_{1 \alpha}^{\prime}(\alpha=a$ or $b), X_{a}, X_{2 a}, X_{2 a}^{\prime}$.

Claim. There holds $X_{2} \notin B_{3}$.
Proof. Otherwise, we would need $\pi_{2} \sim \pm\left(0, \frac{1}{3} \cdot r^{\prime}\right)\left(\bmod r^{\prime}\right)$. Since π_{2} defining X_{2} cannot be of the form $(0, k)$ (see $[14, \S 5.8]$ adapted to π_{2}), we must have

$$
i=r^{\prime} \quad \text { and } \quad j=\frac{1}{3} r^{\prime}, \frac{2}{3} r^{\prime}, \frac{4}{3} r^{\prime}, \frac{5}{3} r^{\prime}
$$

However, $\left(r^{\prime}, \frac{1}{3} r^{\prime}\right)$ is of the form $(3 k, k)$ and $\left(r^{\prime}, \frac{1}{3} r^{\prime}\right)$ of the form $(3 k, 2 k)$; $\left(r^{\prime}, \frac{1}{3} r^{\prime}\right) \equiv-\left(r^{\prime}, \frac{2}{3} r^{\prime}\right)\left(\bmod r^{\prime}\right)$ and $\left(r^{\prime}, \frac{5}{3} r^{\prime}\right) \equiv-\left(r^{\prime}, \frac{1}{3} r^{\prime}\right)\left(\bmod r^{\prime}\right)$.
$X_{2 b}, X_{2 b}^{\prime}$: We need $\pi_{b}^{*} \equiv \pi_{b}^{+}\left(\bmod r^{\prime}\right)$, so we must have $\pi_{b}^{*}\left(h_{b}\right)=\xi^{(q-1) i^{*}}=$ $\omega^{ \pm 1}$. This implies that i^{*} is an odd multiple of $\frac{1}{3} r^{\prime}$ (so that $\left(\pi_{b}^{*}\right)^{3} \neq 1$). So we have $i^{*}=\frac{1}{3} r^{\prime}$ or $\frac{5}{3} r^{\prime}$, which yield the same $\hat{\pi}_{b}^{*}$. Hence, we get one pair $X_{2 b}, X_{2 b}^{\prime}$ in B_{3} corresponding to $i^{*}=\frac{1}{3} r^{\prime}$.
X_{b} : Again, we need $\pi_{b}=\pi_{b}^{+}$on elements of odd order. This yields $\pi_{b}\left(h_{b}\right)=$ $\xi^{i}, i \equiv \pm \frac{1}{3} r r^{\prime}\left(\bmod r r^{\prime}\right)$, so taking multiples of $\frac{1}{3} r r^{\prime}$ not divisible by 3 or by 2^{d} (so that $q-1 \nmid i$), we get $3 \cdot 2^{d+1} \cdot \frac{2}{3}-4=2^{d+2}-4$ different i, and so $2^{d}-1$ characters X_{b}.
3.2.4. The blocks $B_{1 a}$. These are a combination of the blocks $B_{1 a}$ and B_{a} for $p \neq 2$ (see [14, $\S \S 2.2$ and 5.16]). We fix $i^{\#}, 1 \leq i^{\#} \leq r-1$, such that $i^{\#} \neq \frac{r}{3}, \frac{2 r}{3}$. Let $B_{1 a}$ be the block containing $X_{1 a}, X_{1 a}^{\prime}$. As in [14, §5.16], $X_{1 b}, X_{1 b}^{\prime} \notin B_{1 a}$. There are 2^{d} characters $X_{1 a}, X_{1 a}^{\prime}$ in $B_{1 a}$ with $i^{\#^{\prime}} \equiv i^{\#}$ $(\bmod r)$, and $\frac{1}{2} \cdot 2^{d}\left(2^{d}-1\right)=2^{2 d-1}-2^{d-1}$ characters X_{1} with $\pi_{1} \sim(i, j)$:

$$
i=2 i^{\#}+s r, \quad j=3 i^{\#}+t r, \quad 0 \leq s, t \leq 2^{d}-1
$$

(excluding 2^{d} pairs (s, t) with $3 s \equiv 2 t\left(\bmod 2^{d}\right)$, two t for every even $\left.s\right)$.
We now verify

$$
X_{2}, X_{2 a}, X_{2 a}^{\prime}, X_{2 b}, X_{2 b}^{\prime}, X_{b} \notin B_{1 a}
$$

From the tables we see that we must calculate the values of the $\pi_{1}^{\#_{a}}$ that define $X_{1 a}, X_{1 a}^{\prime} \in B_{1 a}$: Suppose $\pi_{1}^{\#_{a}} \sim\left(2 i^{\#}, 3 i^{\#}\right) ;|\rho|=q-1$. Then

$$
\left\{\begin{aligned}
\hat{\pi}_{1}^{\#_{a}}\left(h_{1 a}\right) & =\rho^{2 i^{*}}+\rho^{-2 i^{*}}+2\left(\rho^{i^{*}}+\rho^{-i^{*}}\right) \\
& =\pi_{1}^{\#_{a}}\left(h_{1 a}\right)+\pi_{1}^{\#_{a}}\left(h_{1 a}\right)^{-1}(\bmod 2) \\
\hat{\pi}_{1}^{\#_{a}}\left(h_{1 b}\right) & =2\left(\rho^{3 i^{*}}+\rho^{-3 i^{*}}\right)+1+1 \equiv 0 \quad(\bmod 2)
\end{aligned}\right.
$$

and using [14, §5.5], we obtain

$$
\hat{\pi}_{1}^{\#_{a}}(h) \equiv 0 \quad(\bmod 2) \quad \text { for } h \in H_{1} \backslash\left(H_{1 a} \cup H_{1 b}\right)
$$

Since $X_{1 a}, X_{1 a}^{\prime} \notin B_{1}$, we must have $\hat{\pi}_{1}^{\#_{a}}\left(h_{1 a}\right) \not \equiv 0(\bmod 2)$.
Clearly, then, $X_{b}, X_{2}, X_{2 b}, X_{2 b}^{\prime} \notin B_{1 a}$.
If π_{a}^{*} defines $X_{2 a}, X_{2 a}^{\prime}$, then $\pi_{a}^{*}\left(h_{a}\right)=\xi^{(q-1) i^{*}}$ for some i^{*}, and $\hat{\pi}_{a}^{*}\left(h_{2 a}\right)=$ $1+1 \equiv 0(\bmod 2)$. So $X_{2 a}, X_{2 a}^{\prime} \notin B_{1 a}$.
X_{a} : We need π_{a} such that $\pi_{a} \equiv \pi_{a}^{\#}$ on elements of odd order, where $\pi_{a}^{\#}$ is the map

$$
\pi_{a}^{\#}\left(h_{a}\right)=\xi^{(q+1) i^{*}}=\rho^{i^{\#}}
$$

$i^{\#}$ as in $\pi_{1}^{\#_{a}}$ defining $X_{1 a}, X_{1 a}^{\prime} \in B_{1 a}$.

We indeed have

$$
\begin{aligned}
& \hat{\pi}_{a}^{\#}\left(h_{2 a}\right) \equiv 1+1 \equiv 0 \quad(\bmod 2) \\
& \hat{\pi}_{a}^{\#}\left(h_{a}\right)=2\left(\rho^{i^{*}}+\rho^{-i^{*}}\right) \equiv 0 \quad(\bmod 2) \\
& \hat{\pi}_{a}^{\#}\left(h_{1 a}\right)=\rho^{2 i^{*}}+\rho^{-2 i^{*}} \equiv \hat{\pi}_{1}^{\#_{a}}\left(h_{1 a}\right) \quad(\bmod 2)
\end{aligned}
$$

Since $\xi^{(q+1)^{2} i^{\#}}=\pi_{a}^{\#}\left(h_{1 a}\right)$ and $\xi^{(q+1)^{2}}=\xi^{2(1+q)}=\rho^{2}$, we need $\pi_{a}\left(h_{a}\right)=\xi^{i}$ such that

$$
2^{d+1} i \equiv 2^{d+1}(q+1) i^{\#} \quad\left(\bmod \left(q^{2}-1\right)\right)
$$

or

$$
i=(q+1) i^{\#}+s r r^{\prime}, \quad 1 \leq s \leq 2^{d+1}-1
$$

Since $q+1 \nmid i$, we only take odd s and obtain 2^{d} values of i. As in [14, §4.9], $q i$ is of the above form, but not $-i,-q i$ since, if $-i \equiv(q+1) i^{\#}$ $\left(\bmod r r^{\prime}\right)$, there exist t such that $2 i^{\#}(q+1)=t r r^{\prime}$ and $4 i^{\#}=t r$, giving $i^{\#} \mid r$, a contradiction. This then yields $\frac{1}{2} \cdot 2^{d}$ characters X_{a}.
3.2.5. The blocks $B_{1 b}$. As in the previous case, we have a block determined by an $i^{\#}, 1 \leq i^{\#} \leq r-1$, containing 2^{d} characters $X_{1 b}, X_{1 b}^{\prime}$ defined by $i^{\#^{\prime}} \equiv i^{\#}$ $(\bmod r), \frac{1}{2} \cdot 2^{d}\left(2^{d}-1\right)$ characters X_{1} defined by $\pi_{1} \sim(i, j)$ such that

$$
i=i^{\#}+s r, \quad j=2 i^{\#}+t r, \quad 0 \leq s, t \leq 2^{d}-1
$$

and $\frac{1}{2} \cdot 2^{d}$ characters X_{b} with $\pi_{b}\left(h_{b}\right)=\xi^{i}$:

$$
i=(q+1) i^{\#}+s r r^{\prime}, \quad 1 \leq s \leq 2^{d+1}-1, s \text { odd. }
$$

Calculating, we see that

$$
\left\{\begin{array}{l}
\hat{\pi}_{1}^{\#_{b}}\left(h_{1 a}\right) \equiv 0 \quad(\bmod 2) \\
\hat{\pi}_{1}^{\#_{b}}\left(h_{1 b}\right) \equiv \pi_{1}^{\#_{b}}\left(h_{1 b}\right)+\pi_{1}^{\#_{b}}\left(h_{1 b}\right)^{-1} \quad(\bmod 2) \\
\hat{\pi}_{1}^{\#_{b}}(h) \equiv 0(\bmod 2) \quad \text { for } h \in H_{1} \backslash\left(H_{1 a} \cup H_{1 b}\right)
\end{array}\right.
$$

Therefore, since $X_{1 b}, X_{1 b}^{\prime} \notin B_{1}$, we have $\hat{\pi}_{1}^{\#_{b}}\left(h_{1 b}\right) \not \equiv 0(\bmod 2)$, giving

$$
X_{2}, X_{a}, X_{2 a}, X_{2 a}^{\prime}, X_{1 a}, X_{1 a}^{\prime} \notin B_{1 b}
$$

and since $\hat{\pi}_{b}^{*}\left(h_{1 b}\right) \equiv 0(\bmod 2)$ for any $\pi^{*}\left(h_{b}\right)=\xi^{(q-1) i^{*}}$, we also have $X_{2 b}$, $X_{2 b}^{\prime} \notin B_{1 b}$.
3.2.6. The blocks $B_{2 a}$. These are a combination of the blocks $B_{2 a}$ and B_{a} in [14, $\S \S 2.1$ and 2.4]. We fix $i^{*}, 1 \leq i^{*} \leq r^{\prime}-1$, and let $B_{2 a}$ be the block containing $X_{2 a}, X_{2 a}^{\prime}$ defined by i^{*}. Since $X_{2 a}, X_{2 a}^{\prime} \notin B_{1}$ and $\hat{\pi}_{a}^{*}\left(h_{a}\right) \equiv \hat{\pi}_{a}^{*}\left(h_{1 a}\right) \equiv 0(\bmod 2)$, we have $\hat{\pi}_{a}^{*}\left(h_{2 a}\right) \not \equiv 0(\bmod 2)$ for $h_{2 a}$ of order $q+1$. Hence (by the tables), the only other characters in the block must be of types $X_{2}, X_{a}, X_{2 a}, X_{2 a}^{\prime}$.
$X_{2 a}, X_{2 a}^{\prime}$: If $i^{\#^{\prime}}$ defines another pair $X_{2 a}, X_{2 a}^{\prime} \in B_{2 a}$, then we have

$$
(q-1) 2^{d+1} i^{*} \equiv(q-1) 2^{d+1} i^{*^{\prime}}\left(\bmod \left(q^{2}-1\right)\right) \quad \text { or } \quad i^{\#^{\prime}} \equiv i^{\#}\left(\bmod r^{\prime}\right)
$$

This yields two solutions: $i^{\#^{\prime}}=i^{*}, i^{*}+r^{\prime}$. So we have one other pair $X_{2 a}, X_{2 a}^{\prime}$ in the block corresponding to $i^{*}+r^{\prime}$.
X_{2} : We need $\pi_{2} \equiv \pi_{2}^{* a}$ on elements of odd order, where $\pi_{2}^{* a} \sim\left(2 i^{*}, i^{*}\right)$, since

$$
\left\{\begin{array}{l}
\hat{\pi}_{2}^{* a}\left(h_{2 a}\right) \equiv \pi_{2}^{* a}\left(h_{2 a}\right)+\pi_{2}^{* a}\left(h_{2 a}\right)^{-1} \equiv \hat{\pi}_{a}^{*}\left(h_{2 a}\right) \quad(\bmod 2), \\
\hat{\pi}_{2}^{* a}\left(h_{2 b}\right) \equiv 0 \quad(\bmod 2), \\
\hat{\pi}_{2}^{* a}(h) \equiv 0(\bmod 2) \quad \text { for } h \in H_{2} \backslash\left(H_{2 a} \cup H_{2 b}\right)
\end{array}\right.
$$

So we need $\pi_{2} \sim(i, j): i=2 i^{*}+s r^{\prime}, j=i^{*}+t r^{\prime}, 0 \leq s, t \leq 1$. The pair $s=0, t=1$ yields $\left(2 i^{*}, i^{*}+r^{\prime}\right)$, which we exclude, as it is of the form $(2 k, k)(\bmod (q+1))$; the case $s=t=0$ is $\left(2 i^{*}, i^{*}\right)$, again of course excluded. Since (i, j) and $(i-j, j)$ give the same $\hat{\pi}_{2}$, the two pairs $\left(2 i^{*}+r^{\prime}, r^{\prime}\right)$ and $\left(2 i^{*}+r^{\prime}, i^{*}+r^{\prime}\right)$ give one $X_{2} \in B_{2 a}$.
X_{a} : We need $\pi_{a}\left(h_{a}\right)=\xi^{i}$ such that

$$
2^{d+1} i \equiv 2^{d+1} i^{*}(q-1) \quad\left(\bmod \left(q^{2}-1\right)\right)
$$

or $i=i^{*}(q-1)+s r r^{\prime}$, where $1 \leq s \leq 2^{d+1}-1$ and $s \neq 2^{d}$. This gives $2^{d+1}-2$ solutions and $2^{d}-1$ characters X_{a}.
3.2.7. The blocks $B_{2 b}$. As in the previous case, for a fixed $i^{*}, 1 \leq i^{*} \leq r^{\prime}-1$, $i^{*} \neq \frac{r^{\prime}}{3}, \frac{2 r^{\prime}}{3}$, we have two pairs $X_{2 b}, X_{2 b}^{\prime}$ corresponding to i^{*} and $i^{*}+r^{\prime}$. Also one $X_{2} \in B_{2 b}$ with $\pi_{2} \sim\left(3 i^{*}+r^{\prime}, 2 i^{*}+r^{\prime}\right)$ or ($3 i^{*}, 2 i^{*}+r^{\prime}$). (The pair $\left(3 i^{*}+r^{\prime}, 2 i^{*}\right)$ is excluded, as it is of type $(3 k, 2 k)$.) The above pair yields the same X_{2}, since (i, j) and $(3 j-i, j)$ give the same $\hat{\pi}_{2}$.

We have $2^{d}-1$ characters X_{b} corresponding to $i=i^{*}(q-1)+s r r^{\prime}$, as above.
3.2.8. There remain only those $X_{1}, X_{2}, X_{a}, X_{b}$ not in any of the above blocks.

Lemma. Let $\alpha=a$ or b, and $\pi_{\alpha}\left(h_{\alpha}\right)=\xi^{i}$, where π_{α} defines X_{α} and i is a multiple of r or of r^{\prime}. Then X_{α} is in B_{1}, B_{3} or in one of the blocks $B_{1 \alpha}, B_{2 \alpha}$. Proof. First let $i=t r, t \geq 1$. If $r^{\prime} \mid t$ or $i \equiv \pm \frac{1}{3} r r^{\prime}$, then $X_{\alpha} \in B_{1} \cup B_{3}$. Otherwise, we show $i=\left(2^{d} i^{*}+s r^{\prime}\right) r$ for some i^{*}, where $1 \leq i^{*}<q+1$ and $1 \leq s<2^{d+1}$, which gives $X_{\alpha} \in B_{2 \alpha}$ for the appropriate block $B_{2 \alpha}$ defined by i^{*}. Since $\left(2^{d}, r^{\prime}\right)=1$, we can set $i^{*} \equiv 1 / 2^{d} \cdot t\left(\bmod r^{\prime}\right)\left(\right.$ giving $\left.1 \leq i^{*}<r^{\prime}\right)$. Then $t=2^{d} i^{*}+m r^{\prime}$ for some m. If $m>0$ we are done. Otherwise, we look at $\left(q^{2}-1\right)-i$, which yields the same $\hat{\pi}_{\alpha}\left(\right.$ and so the same $\left.X_{\alpha}\right)$:

$$
\left(q^{2}-1\right)-i=\left[\left(2^{d+1}-2^{d}-m\right) r^{\prime}+2^{d}\left(r^{\prime}-i^{*}\right)\right] r .
$$

Since now $m<0$, we must have, because of $t \geq 1$, that $m<-2^{d}$, so $1 \leq$ $2^{d+1}-2^{d}-m<2^{d+1}$ as required, and X_{α} is in the $B_{2 \alpha}$ defined by $r^{\prime}-i^{*}$.

Now take $i=t r^{\prime}$. If $i \equiv \pm \frac{1}{3} r r^{\prime}\left(\bmod r r^{\prime}\right)$ or if $r r^{\prime} \mid i$, then $X_{\alpha} \in B_{1} \cup B_{3}$. Otherwise, we show $i=\left(2 i^{\#}+s r\right) r^{\prime}$ for some $i^{\#}, 1 \leq i^{\#} \leq q-1,1 \leq s<$ 2^{d+1}, so that $X_{\alpha} \in B_{1 \alpha}$ for the block $B_{1 \alpha}$ defined by $i^{\#}$. Set $i^{\prime} \equiv t(\bmod r)$, $1 \leq i^{*} \leq r$; then

$$
t=i^{\prime}+s r \text { for } s \geq 0
$$

If i^{\prime} is even, we are done, as $i^{\prime}=2 i^{\#}$ and $i^{\#}$ defines the block $B_{1 \alpha}$ to which X_{α} belongs. If i^{\prime} is odd, then if $s>0$ we have $i^{\prime}+r$ even and $t=\left(i^{\prime}+r\right)+(s-1) r$
of the appropriate form, taking $i^{\#}=\frac{1}{2}\left(i^{\prime}+s r\right)$. If $s=0$ we look at $\left(q^{2}-1\right)-i=$ $\left(2^{d+1} r-t\right) r^{\prime}$, and then $t^{\prime}=2^{d+1} r-t>r$ can be written in the above form; t yields the same $\hat{\pi}_{\alpha}$.
3.2.9. The blocks $B_{X_{1}}$. Let $X_{1}\left(\pi_{1}\right) \notin B_{1} \cup B_{3}$ and $X_{1} \notin B_{1 a} \cup B_{1 b}$ for all blocks of these types. Denote by $B_{X_{1}}$ the block containing $X_{1}\left(\pi_{1}\right)$. Assume $\pi_{1} \sim(i, j)$.

Claim. There holds $X_{2}, X_{a}, X_{b} \notin B_{X_{1}}$.
Proof. If $X_{2} \in B_{X_{1}}$, we would need $\hat{\pi}_{1}(h) \equiv 0(\bmod 2)$ for all $h \in H_{1}$ giving $X_{1} \in B_{1}$. If $X_{\alpha} \in B_{X_{1}}(\alpha=a$ or $b)$, we would have $\hat{\pi}_{\alpha}\left(h_{2 \alpha}\right) \equiv 0(\bmod 2)$ for π_{α} defining X_{α}. This implies $\xi^{2(q-1) i}=1, \pi_{\alpha}\left(h_{\alpha}\right)=\xi^{i}$, and so $r^{\prime} \mid i$. By Lemma 3.2.8, this means $X_{\alpha} \notin B_{X_{1}}$.

As in $[14, \S 5.18]$, we have a total of $2^{2 d}$ characters of type X_{1} in $B_{X_{1}}$ corresponding to pairs $\left(i^{\prime}, j^{\prime}\right)$ such that $\left(i^{\prime}, j^{\prime}\right) \equiv(i, j)(\bmod r)$. Counting the blocks $B_{X_{1}}$, we exclude all (i, j) such that

$$
\begin{aligned}
& 2 i \equiv j(\bmod r), \quad 3 i \equiv 2 j(\bmod r), \\
& i \equiv j(\bmod r), \quad 3 i \equiv j(\bmod r) .
\end{aligned}
$$

If $q \not \equiv 1(\bmod 3)$, then each congruence has $r-1$ solutions, as r is odd and $3 \nmid r$, and none of the solutions occurs more than once. This gives $(r-1)^{2}-$ $4(r-1)=(r-1)(r-5)$ characters π_{1}, and so $\frac{1}{12}(r-1)(r-5)$ blocks. If $q \equiv 1(\bmod 3)$, then $3 \mid r$, so we get $r-1$ solutions to $2 i \equiv j, i \equiv j$, and $r-3$ solutions to $3 i \equiv j, 3 i \equiv 2 j$ (as in [14, §5.18]), and thus get $(r-1)^{2}-2(r-1)-2(r-3)=(r-3)^{2}$ characters π_{1} and $\frac{1}{12}(r-3)^{2}$ blocks.
3.2.10. The blocks $B_{X_{2}}$. Let $B_{X_{2}}$ be the block containing $X_{2}\left(\pi_{2}\right)$ for some $X_{2} \notin B_{1} \cup B_{3} \cup B_{2 a} \cup B_{2 b}$. Assume $\pi_{2} \sim(i, j)$. As in [14, §2.4], $B_{X_{2}}$ contains four characters of type X_{2} corresponding to the pairs

$$
\left(i, j+r^{\prime}\right), \quad\left(i+r^{\prime}, j\right), \quad\left(i+r^{\prime}, j+r^{\prime}\right), \quad \text { and } \quad(i, j)
$$

We have $X_{\alpha} \notin B_{X_{2}}$ for $\alpha=a$ and b, since otherwise, for π_{α} defining X_{α}, we would have $\pi_{\alpha}\left(h_{1 \alpha}\right) \equiv 0(\bmod 2)$, implying $\pi_{\alpha}\left(h_{\alpha}\right)=\xi^{i r}$ for some r. This contradicts Lemma 3.2.8.
3.2.11. The blocks $B_{X_{\alpha}}, \alpha=a$ or b. Let $\pi_{\alpha}\left(h_{\alpha}\right)=\xi^{i}$ define $X_{\alpha}\left(\pi_{\alpha}\right)$, where i is not a multiple of r or r^{\prime}, and $1 \leq i<r r^{\prime}$. Denote by $B_{X_{\alpha}}$ the block containing X_{α}.

The block $B_{X_{\alpha}}$ contains all X_{α} defined by $i^{\prime}=i+s r r^{\prime}, 1 \leq s \leq 2^{d+1}$, giving 2^{d+1} characters X_{α}. (These all give different $\hat{\pi}_{\alpha}$ as $-i, q i,-q i$ are not of this form. For instance, if we had $i \equiv q i\left(\bmod r r^{\prime}\right)$, then $(q-1) i \equiv 0\left(\bmod r r^{\prime}\right)$, which implies $i \equiv 0\left(\bmod r^{\prime}\right)$, a contradiction.)

Clearly, $X_{b} \notin B_{X_{a}}$ for all X_{b}, since otherwise, if π_{b} defines X_{b}, we would have $\pi_{b}(h) \equiv 0(\bmod 2)$ for all $1 \neq h \in H_{b}$, giving $X_{b} \in B_{1}$. Similarly $X_{a} \notin B_{X_{b}}$ for all X_{a}.

Number of blocks of this type: $\frac{1}{4}\left(r r^{\prime}-r-r^{\prime}+1\right)=\frac{1}{8}(r-1)(q-1)$.
3.2.12. $q \equiv-1(\bmod 4)$. The proofs here are analogous to those for $q \equiv 1$ $(\bmod 4)$. We merely exchange $q+1$ for $q-1$ and also the subscripts 1 and $2, a$ and b, and superscripts \# and $*$.

4. Proofs: decomposition matrices

4.1. Some scalar products. The following tables list some scalar products between characters of G. We only give those scalar products we shall need in our proofs and which have not already been given in Appendix A of [7]. As always, missing entries are 0 .
(a) $q \equiv 0(\bmod 3)($ Table $(q))$.

Table (q)

Char.	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}
$X_{19} \otimes X_{13}$		$q^{2} / 9$		$q / 3$				
$X_{19} \otimes X_{14}$		$q^{2} / 9$	$q / 3$					
$X_{19} \otimes X_{19}$		$q^{2} / 9$				$q / 3$		$q / 3$
$X_{19} \otimes \bar{X}_{19}$	1	$q^{2} / 9$	$q / 3$	$q / 3$				
$\left(X_{3}+X_{6}\right) \otimes X_{22}$		$2\left(q^{2}+1\right)$	$2 q / 3$	$2 q / 3$	q	$q / 3$	q	$q / 3$

(b) $q \equiv \varepsilon(\bmod 3), \varepsilon=1,-1($ Table $(\mathrm{r}))$.

Table (r)

Char.	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}
$X_{19} \otimes X_{13}$		$(q-\varepsilon)^{2} / 9$		$(q-\varepsilon) / 3$				
$X_{19} \otimes X_{14}$		$(q+2 \varepsilon)(q-\varepsilon) / 9(q-\varepsilon) / 3$						
$X_{19} \otimes X_{19}$		$(q+2 \varepsilon)(q-\varepsilon) / 9$			$(q-\varepsilon) / 3$		$(q-\varepsilon) / 3$	
$X_{19} \otimes \bar{X}_{19}$	1	$(q+2 \varepsilon)(q-\varepsilon) / 9(q-\varepsilon) / 3$	$(q+2 \varepsilon) / 3$					
$X_{3} \otimes X_{32}$		$q-\varepsilon$		1		1		

4.2. The proof for the principal block B_{1}. We have the following relations on 2-regular classes:

$$
\begin{aligned}
& X_{16}=X_{15}-X_{17}+X_{18} \\
& X_{21}=X_{12}+X_{15}-X_{17} \\
& X_{22}=X_{11}+X_{15}-X_{17} \\
& X_{23}=X_{14}+X_{15}+X_{18} \\
& X_{24}=X_{13}+X_{15}+X_{18}
\end{aligned}
$$

If $\delta=-1$, we have furthermore

$$
\begin{aligned}
X_{2 a} & =X_{12}-X_{13}-X_{17}-X_{18}, \\
X_{2 a}^{\prime} & =-X_{11}+X_{14}+X_{17}+X_{18}, \\
X_{2 b} & =X_{12}-X_{14}-X_{17}-X_{18}, \\
X_{2 b}^{\prime} & =-X_{11}+X_{13}+X_{17}+X_{18}, \\
X_{a} & =-X_{11}+X_{12}-X_{13}+X_{14}=X_{2 a}+X_{2 a}^{\prime}, \\
X_{b} & =-X_{11}+X_{12}+X_{13}-X_{14}=X_{2 b}+X_{2 b}^{\prime}, \\
X_{2} & =X_{11}+X_{12}-X_{13}-X_{14}-2 \cdot X_{17}-2 \cdot X_{18} \\
& =X_{2 a}-X_{2 a}^{\prime}=X_{2 b}-X_{2 b}^{\prime} .
\end{aligned}
$$

If $\delta=1$, these are replaced by

$$
\begin{aligned}
X_{1 a} & =X_{12}+X_{14}+2 \cdot X_{15}-X_{17}+X_{18}, \\
X_{1 a}^{\prime} & =X_{11}+X_{13}+2 \cdot X_{15}-X_{17}+X_{18}, \\
X_{1 b} & =X_{12}+X_{13}+2 \cdot X_{15}-X_{17}+X_{18} \\
X_{1 b}^{\prime} & =X_{11}+X_{14}+2 \cdot X_{15}-X_{17}+X_{18}, \\
X_{a} & =-X_{11}+X_{12}-X_{13}+X_{14}=X_{1 a}-X_{1 a}^{\prime}, \\
X_{b} & =-X_{11}+X_{12}+X_{13}-X_{14}=X_{1 b}-X_{1 b}^{\prime}, \\
X_{1} & =X_{11}+X_{12}+X_{13}+X_{14}+4 \cdot X_{15}-2 \cdot X_{17}+2 \cdot X_{18} \\
& =X_{1 a}+X_{1 a}^{\prime}=X_{1 b}+X_{1 b}^{\prime} .
\end{aligned}
$$

Since $X_{11}, X_{12}, X_{13}, X_{15}, X_{14}, X_{17}$, and X_{18} are linearly independent on 2regular classes, they form a basic set by Lemma 4 of [7]. Table (s) gives a list of scalar products, where u, v, w, x, y, and z are nonnegative integers. The projectives originate from Table (t) (see next page).

Table (s)

Char.	$\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}$					Φ_{6}	Φ_{7}	Φ_{7}^{\prime}	Φ_{8}	Φ_{9}
X_{11}	1					1			1	1
X_{17}							1	q		
X_{18}		1						q/3		
X_{13}	1		1			u		$2 q / 3$	q	1
X_{14}	1			1		v		$2 q / 3$	1	q
X_{15}	2						1	q	$q+1$	$q+1$
X_{12}	1	x	y	z		w	$q-1$	$2\left(q^{2}+1\right)$	q	q

Table (t)

Char.	Origin	Remarks
Φ_{1}	$\mathbf{1}_{U}^{G}$	
Φ_{2}	$X_{19} \otimes X_{19}$	X_{19} defect 0
Φ_{3}	$X_{19} \otimes X_{14}$	X_{19} defect 0
Φ_{4}	$X_{19} \otimes X_{13}$	X_{19} defect 0
Φ_{5}	G-G	
Φ_{6}	$X_{19} \otimes \bar{X}_{19}$	X_{19} defect 0
Φ_{7}	$X_{3} \otimes X_{32}$	only if 3łq
Φ_{7}^{\prime}	$\left(X_{3}+X_{6}\right) \otimes X_{22}$	if 3\|q, X_{3}, X_{6} defect 0
Φ_{8}	$\mathbf{1}_{U_{\{b\}}}^{G}$	[7, Appendix A]
Φ_{9}	$\mathbf{1}_{U_{\{a\}}}$	[7, Appendix A]

Now Φ_{6} shows that X_{15} is not a constituent of Φ_{11}, the projective indecomposable corresponding to the trivial character X_{11}. On the other hand, by Fong's lemma (Theorem 6.3.86 of [10]), X_{13}, X_{14}, and X_{12} are contained in Φ_{11}. Hence, there is just one way Φ_{1} can break up into projectives: $\Phi_{1}=\Phi_{11}+2 \cdot \Phi_{15}$.

Let Φ denote the projective indecomposable character contained in Φ_{7}, resp. Φ_{7}^{\prime}, which has nonzero scalar product with X_{17}. Since the decomposition matrix has only 1 's as elementary divisors, X_{17} is contained just once in Φ. Thus, we get the set of projectives given in Table (u). We observe that $\Phi_{11}, \Phi, \Phi_{2}, \ldots, \Phi_{5}$, and Φ_{15} are a basis for the set of projectives of the principal block.

Table (u)

Char.	$\Phi_{11} \Phi \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{15} \Phi_{5}$						Φ		Φ_{7}^{\prime}	${ }_{7}^{\prime}$		Φ_{8}	Φ_{9}
X_{11}	1											1	1
X_{17}		1					1		q	q			
X_{18}			1						$q / 3$	3			
X_{13}		b		1					$2 q /$	/3		q	1
X_{14}		c			1				$2 q /$	/3		1	q
X_{15}		d							q	a		+ 1	$q+1$
X_{12}	1	e	x	y	z				$\left(q^{2}+\right.$	+1		q	q

Now Φ is certainly not contained in Φ_{8} or Φ_{9}. It follows that Φ_{15} is contained $(q+1)$ times in each of these. Furthermore, Φ_{11} is contained once in each of Φ_{8} and Φ_{9}. Subtracting these from Φ_{8}, respectively Φ_{9}, leaves multiples of projectives with multiplicity $(q-1)$. We thus get the set of projectives given in Table (v).

TABLE (v)

Char.	$\Phi_{11} \Phi \Phi_{2} \Phi_{13} \Phi_{14} \Phi_{15} \Phi_{12}$					Φ_{7}	Φ_{7}^{\prime}	
X_{11}	1							
X_{17}						1		q
X_{18}			1					/3
X_{13}		b		1				$q / 3$
X_{14}		c			1			$q / 3$
X_{15}		d				1		q
X_{12}	1	e	x	1	1	$q-$	$2\left(q^{2}\right.$	${ }^{2}+1$

If $3 \mid q$, then Φ is contained q times in Φ_{7}^{\prime}. It follows that $a=b=c=0$, that $d \leq 1$, and that $e \leq 2 q$. This is of course trivially true in case $3 \nmid q$, by considering Φ_{7}. Since $X_{16}=X_{15}-X_{17}+X_{18}$ on 2-regular classes, we must have that $d=1$. The missing entries of the decomposition matrix are now filled in, using the relations given above. The tensor product $X_{19} \otimes X_{19}$ shows that $x \leq(q+2) / 3$. If 3 does not divide q, use Φ_{7} to get the bound $e \leq q$, and, with $x \leq q$, the lower bound for $\phi_{12}(1)$. If $3 \mid q$ and $q>3$, we get from Φ_{7}^{\prime} that $3 e+x \leq 6 q$. This yields the lower bound for $\phi_{12}(1)$ in this case, and completes the proof for the principal block.

4.3. The block B_{3}.

4.3.1. The case $q \equiv-1(\bmod 3)$. Here we have the following relations:

$$
\begin{aligned}
X_{2 b} & =X_{31}-X_{33} \\
X_{2 b}^{\prime} & =X_{32}+X_{33} \\
X_{b} & =X_{31}+X_{32}=X_{2 b}+X_{2 b}^{\prime} \\
X_{2} & =X_{31}-X_{32}-2 \cdot X_{33}=X_{2 b}-X_{2 b}^{\prime}
\end{aligned}
$$

Of course, the last relation only makes sense in case $4 \mid q+1$, since otherwise, X_{2} is not contained in B_{3}. Since X_{31}, X_{32}, X_{33} are linearly independent on 2regular classes, they form a basic set by Lemma 4 of [7]. Table (w) gives a table of scalar products with projective characters, with the projectives originating from Table (x) (see next page).

Table (w)

char.	Φ_{1}	Φ_{2}	Φ_{3}
X_{32}	1		
X_{33}		1	
X_{31}	1	γ	1

Table (x)

Char.	Origin	Remarks
Φ_{1}	$\mathbf{1}_{U_{\{b\}}}^{G}$	[7, Appendix A]
Φ_{2}	$X_{19} \otimes X_{14}$	X_{19} defect 0
Φ_{3}	G-G	

These projectives show that X_{32} and X_{33} are irreducible modulo 2. If $4 \mid q+1$, then X_{2} is in the block, and the last relation shows that X_{32} must be a modular constituent of X_{33}. The tensor product $X_{14} \otimes X_{19}$ yields the desired bound for γ, and the proof is complete in this case.

If $4 \mid q-1$, then the defect group of B_{3} is a Sylow 2-subgroup of $\mathrm{SU}_{3}(q)$. It is semidihedral of order 2^{d+2}. The decomposition matrices given in [6, §11] now show that $\gamma=1$ and that X_{32} is a modular constituent of X_{31}.
4.3.2. The case $q \equiv 1(\bmod 3)$. Here we have the following relations:

$$
\begin{aligned}
X_{1 a} & =X_{31}+X_{33} \\
X_{1 a}^{\prime} & =X_{32}+X_{33} \\
X_{a} & =X_{31}-X_{32}=X_{1 a}-X_{1 a}^{\prime} \\
X_{1} & =X_{31}+X_{32}+2 \cdot X_{33}=X_{1 a}+X_{1 a}^{\prime} .
\end{aligned}
$$

Of course, the last relation only makes sense if $4 \mid q-1$, since otherwise X_{1} is not contained in B_{3}. Since X_{31}, X_{32}, X_{33} are linearly independent on 2regular classes, they form a basic set by Lemma 4 of [7]. Table (y) gives a table of scalar products with projective characters, with the projectives originating from Table (z).

Table (y)

char.	$\Phi_{1} \Phi_{2}$	Φ_{3}	
X_{32}	1		
X_{33}	2	1	
X_{31}	1	x	1

Table (\mathbf{z})

Char.	Origin	Remarks
Φ_{1}	$\mathbf{1}_{U_{\{b\}}}^{G}$	[7, Appendix A]
Φ_{2}	$X_{19} \otimes X_{14}$	X_{19} defect 0
Φ_{3}	G-G	

The defect group of B_{3} is contained in $\mathrm{SL}_{3}(q)$. If $4 \mid q+1$, this defect group is semidihedral of order 2^{d+2}. In [6, §11], Erdmann enumerates the possible decomposition matrices of blocks with semidihedral defect group and three irreducible Brauer characters. From those results it follows that the inde-
composable Φ_{3} is contained x times in Φ_{2}, and that $\left(\Phi_{2}-x \Phi_{3}\right)$ is contained twice in Φ_{1}.

Now let $4 \mid q-1$. We shall show that X_{33} remains irreducible on reduction modulo 2. This will complete the proof, since the relation for X_{a} then shows that there is only one way Φ_{1} can break up into indecomposables. Let $H=$ \mathscr{H}_{1} be the split maximal torus, B a Borel subgroup containing H, and $N=$ $N_{G}(H)$ the Cartan subgroup of G. Let λ be one of the two ordinary irreducible characters of H whose Harish-Chandra induction is $X_{31}+X_{32}+2 X_{33}$. Let S denote the Sylow 2-subgroup of H. Since $4 \mid q-1$, we have $C_{G}(S)=H$. Since $N_{G}(S)$ normalizes $C_{G}(S)$, we certainly have $N_{G}(S)=N$. Also, $N_{B}(S)=H$.

Next we choose a splitting 2-modular system (K, R, k). As usual, R denotes a rank-1 complete discrete valuation ring with field of fractions K and residue class field k of characteristic 2 . Let l be an $R H$-lattice with character λ, and let L denote the inflation of l to B. By [9, Theorem 2.18], l is extendible to its inertia subgroup T in N. Since T / H is isomorphic to a symmetric group on three letters, l^{T} is a direct sum of three indecomposable modules. Each of these has dimension 2 and vertex S, and two of these are isomorphic. By Green's theorem, l^{N} is the direct sum of three indecomposable modules of dimension 4 and vertex S, two of which are isomorphic. Furthermore, every indecomposable direct summand of l^{N} is self-dual.

We now apply Burry's generalized version of Green correspondence (see [1, Theorem 4.2(a)]) to L^{G}. It states that the number of direct summands of L^{G} with vertex S (counting multiplicities) is the same as the number of direct summands with vertex S in $\left(L_{N_{B}(S)}\right)^{N_{G}(S)}=\left(L_{H}\right)^{N}=l^{N}$. Hence, $L^{G}=X \oplus$ $Y \oplus Y$, where X has character $X_{31}+X_{32}$ and Y has character X_{33}.

Now Y is certainly self-dual, and so is \bar{Y}, the reduction of Y modulo 2. Since L is a trivial source module (being a direct summand of l^{B}), \bar{Y} has trivial source, and so all its endomorphisms are liftable (see [11, Theorem II 12.4]). Every irreducible $k G$-module in B_{3} is self-dual, since it has a realvalued Brauer character. From this, and the fact that \bar{Y} is self-dual with a 1-dimensional endomorphism ring, it follows that \bar{Y} is irreducible. This completes the proof.
4.4 The blocks $B_{1 a}$ and $B_{1 b}$. The proof for $B_{1 b}$ is exactly the same as that for $B_{1 a}$, so we only give the latter. The characters of type $X_{1 a}^{\prime}$ which lie in the block have the same restriction to the 2-regular classes. The same is true for the characters of type $X_{1 a}$. Furthermore, we have the following relations on 2-regular classes: $X_{1}=X_{1 a}+X_{1 a}^{\prime}$ and $X_{a}=X_{1 a}-X_{1 a}^{\prime}$. We have projectives

Char.	Φ_{1}	Φ_{2}
$X_{1 a}^{\prime}$	1	
$X_{1 a}$	1	1

Here, Φ_{1} originates from $\mathbf{1}_{U_{\{b\}}}^{G}$ (divided by $3 q+3$ (see [7, p. 349])) and Φ_{2} from the Gelfand-Graev character. The relations show that each of these projectives must be indecomposable, and we are finished with the proof.
4.5. The blocks $B_{2 a}$ and $B_{2 b}$. The proofs here are similar to the ones above. In place of $\mathbf{1}_{U_{\{b\}}}^{G}$ we have to take $\mathbf{1}_{U_{\{a\}}}^{G}$.

APPENDIX

Table 1 (a)
$q \equiv 1(\bmod 4)$

$$
\begin{aligned}
& G_{2}(q)=\text { Central char. on } 2^{\prime} \text {-elements }(\bmod 2) \\
& \quad q-1=2^{d} \cdot r, q+1=2 r^{\prime}, r \text { and } r^{\prime} \text { odd }
\end{aligned}
$$

	defect.	$2 d+2$	$2 d+2$	$2 d+1$	3	$2 d+2$	$2 d+1$	$d+2$	2
	$\begin{gathered} 2,3 \nmid q \\ G_{2}(q) \end{gathered}$	$\begin{aligned} & \omega_{11} \\ & \omega_{12} \end{aligned}$	$\begin{aligned} & \omega_{13} \\ & \omega_{14} \end{aligned}$	$\begin{aligned} & \omega_{15} \\ & \omega_{16} \end{aligned}$	$\begin{aligned} & \omega_{17} \\ & \omega_{18} \end{aligned}$	$\begin{aligned} & \omega_{21}, \omega_{22} \\ & \omega_{23}, \omega_{24} \end{aligned}$	$\begin{gathered} \omega_{31}, \omega_{32} \\ \omega_{33} \\ \varepsilon=1 \end{gathered}$	$\begin{gathered} \omega_{31}, \omega_{32} \\ \varepsilon=-1 \end{gathered}$	ω_{33} $\varepsilon=-1$
	1	1	1	1	1	1	1	1	1
	\hat{u}_{1}	0							
	\hat{u}_{2}	0							
	\hat{u}_{3}	0							
	\hat{u}_{4}	0							
	\hat{u}_{5}	0							
	\hat{u}_{6}	0							
	\hat{k}_{3}	0	$\widehat{I}_{1}\left(k_{3}\right) \equiv 0$	$\widehat{I}_{1}\left(k_{3}\right) \equiv 0$		$\hat{\pi}_{1}^{\times}\left(k_{3}\right) \equiv 0$	$\hat{\pi}_{1}^{+}\left(k_{3}\right) \equiv 0$		
$\varepsilon=1$	\hat{k}_{31}	0							
	$\hat{k}_{32}, k_{3,3,1}$	0							
	\hat{k}_{3}	0			$\widehat{I}_{2}\left(k_{3}\right) \equiv 0$				$\pi_{2}^{+}\left(k_{3}\right)$
$\varepsilon=-1$	\hat{k}_{31}	0							
	$\hat{k}_{32}, k_{3,3,1}$	0							
	$\hat{h}_{1 a}$	0	$\hat{I}_{1}\left(h_{1 a}\right) \equiv 0$	$\hat{l}_{1}\left(h_{1 a}\right) \equiv 0$		$\hat{\pi}_{1}^{\times}\left(h_{1 a}\right) \equiv 0$	$\hat{\pi}_{1}^{+}\left(h_{1 a}\right)$		
	$\hat{h}_{1 a, 1}$	0							
	$\hat{h}_{1 b}$	0	$\hat{I}_{1}\left(h_{1 b}\right) \equiv 0$	$\hat{I}_{1}\left(h_{1 b}\right) \equiv 0$		$\hat{\pi}_{1}^{\times}\left(h_{1 b}\right) \equiv 0$	$\hat{\pi}_{1}^{+}\left(h_{1 b}\right)=0$	$\hat{\pi}_{b}\left(h_{1 b}\right) \equiv 0$	
	$\hat{h}_{1 b, 1}$	0							
	$\hat{h}_{2 a}$	0			$\widehat{I}_{2}\left(h_{2 a}\right) \equiv 0$				$\hat{\pi}_{2}^{+}\left(h_{2 a}\right) \equiv 0$
	$\hat{h}_{2 a, 1}$	0							
	$\hat{h}_{2 b}$	0			$\widehat{I}_{2}\left(h_{2 b}\right) \equiv 0$			$\hat{\pi}_{b}^{+}\left(h_{2 b}\right)$	$\hat{\pi}_{2}^{+}\left(h_{2 b}\right)$
	$\hat{h}_{2 b, 1}$	0							
	\hat{h}_{1}	0	$\widehat{I}_{1}\left(h_{1}\right) \equiv 0$	$\widehat{I}_{1}\left(h_{1}\right) \equiv 0$		$\hat{\pi}_{1}^{\times}\left(h_{1}\right) \equiv 0$	$\hat{\pi}_{1}^{+}\left(h_{1}\right) \equiv 0$		
	\hat{h}_{2}	0			$\widehat{I}_{2}\left(h_{2}\right) \equiv 0$				$\hat{\pi}_{2}^{+}\left(h_{2}\right) \equiv 0$
	\hat{h}_{a}	0							
	\hat{h}_{b}	0						$\hat{\pi}_{b}^{+}\left(h_{b}\right) \equiv 0$	
	\hat{h}_{3}	0							
	\hat{h}_{6}	0	0	0	0	0	0	0	0

Table 1 (b)
$q \equiv 1(\bmod 4)$
$G_{2}(q)=$ Central char. on 2^{\prime}-elements $(\bmod 2)$
$q-1=2^{d} \cdot r, q+1=2 r^{\prime}, r$ and r^{\prime} odd

	defect:	$2 d$	2	$d+1$	$d+2$	$2 d+1$	$d+1$	$d+2$	$2 d+1$
	2, 3łq	ω_{1}	ω_{2}	ω_{a}	$\omega_{2 a}, \omega_{2 a}^{\prime}$	$\omega_{1 a}, \omega_{1 a}^{\prime}$	ω_{b}	$\omega_{2 b}, \omega_{2 b}^{\prime}$	$\omega_{1 b}, \omega_{1 b}^{\prime}$
	1	1	1	1	1	1	1	1	1
	\hat{u}_{1}								
	\hat{u}_{2}								
	\hat{u}_{3}								
	\hat{u}_{4}								
	\hat{u}_{5}								
	\hat{u}_{6}								
	\dot{k}_{3}	$\dot{\pi}_{1}\left(k_{3}\right)$				$\hat{\pi}_{1}^{\# a}\left(k_{3}\right)$	$\hat{\pi}_{b}\left(k_{3}\right)$	$\hat{\pi}_{b}^{*}\left(k_{3}\right)$	$\hat{\pi}_{1}^{\#_{h}}\left(k_{3}\right)$
$\varepsilon=1$	\hat{k}_{31}								
	$\hat{k}_{32}, k_{3,3.1}$								
	\hat{k}_{3}		$\hat{\pi}_{2}\left(k_{3}\right)$	$\hat{r}_{a}\left(k_{3}\right)$	$\hat{\pi}_{a}^{*}\left(k_{3}\right)$				
$\varepsilon=-1$	\hat{k}_{31}								
	$\hat{k}_{32}, k_{3,3,1}$								
	$\hat{h}_{1 a}$	$\hat{\pi}_{1}\left(h_{1 a}\right)$		$\hat{\pi}_{a}\left(h_{1 a}\right)$	$\hat{\pi}_{a}^{*}\left(h_{1 a}\right)$	$\hat{\pi}_{1}^{\# a_{a}}\left(h_{1 a}\right)$			$\hat{\pi}_{1}^{\#_{h}}\left(h_{1 a}\right) \equiv 0$
	$\hat{h}_{1 a, 1}$								
	$\hat{h}_{1 b}$	$\hat{\pi}_{1}\left(h_{1 b}\right)$				$\hat{\pi}_{1}^{\# a}\left(h_{1 b}\right) \equiv 0$	$\hat{\pi}_{b}\left(h_{1 b}\right)$	$\hat{\pi}_{b}^{*}\left(h_{1 b}\right)$	$\hat{\pi}_{1}^{\#_{b}}\left(h_{1 b}\right)$
	$\hat{h}_{1 b, 1}$								
	$\hat{h}_{2 a}$		$\hat{\pi}_{2}\left(h_{2 a}\right)$	$\hat{\pi}_{a}\left(h_{2 a}\right)$	$\dot{\pi}_{a}^{*}\left(h_{2 a}\right)$				
	$\hat{h}_{2 a, 1}$								
	$\hat{h}_{2 b}$		$\hat{\pi}_{2}\left(h_{2 b}\right)$				$\hat{\pi}_{b}\left(h_{2 b}\right)$	$\hat{\pi}_{b}^{*}\left(h_{2 h}\right)$	
	$\hat{h}_{2 b, 1}$								
	\hat{h}_{1}	$\hat{\pi}_{1}\left(h_{1}\right)$				$\hat{\pi}_{1}^{\# a}\left(h_{1}\right)$			$\hat{\pi}_{1}^{\#_{b}}\left(h_{1}\right)$
	\hat{h}_{2}		$\hat{\pi}_{2}\left(h_{2}\right)$						
	\hat{h}_{a}			$\hat{\pi}_{a}\left(h_{a}\right)$	$\hat{\pi}_{a}^{*}\left(h_{a}\right)$				
	\hat{h}_{b}						$\hat{\pi}_{b}\left(h_{b}\right)$	$\hat{\pi}_{b}^{*}\left(h_{b}\right)$	
	\hat{h}_{3}								
	\hat{h}_{6}	0	0	0	0	0	0	0	0

Table 2 (a)
$q \equiv-1(\bmod 4)$
$G_{2}(q)=$ Central char. on 2^{\prime}-elements $(\bmod 2)$

$$
q-1=2 r^{\prime}, \quad q+1=2^{d} \cdot r, r \text { and } r^{\prime} \text { odd }
$$

	defect:	$2 d+2$	$2 d+2$	$2 d+1$	3	$2 d+2$	$2 d+1$	$d+2$	2
	$\begin{gathered} 2,3 \nmid q \\ G_{2}(q) \end{gathered}$	ω_{11} ω_{12}	ω_{13} ω_{14}	$\begin{aligned} & \omega_{17} \\ & \omega_{18} \end{aligned}$	ω_{15} ω_{16}	ω_{21}, ω_{22} ω_{23}, ω_{24}	$\begin{gathered} \omega_{31}, \omega_{32} \\ d\left(X_{33}\right)=2 d \\ \omega_{33} \\ \varepsilon=-1 \end{gathered}$	ω_{31}, ω_{32} $\varepsilon=1$	ω_{33} $\varepsilon=1$
	1	1	1	1	1	1	1	1	1
	\hat{u}_{1}	0							
	\hat{u}_{2}	0							
	\dot{u}_{3}	0							
	\dot{u}_{4}	0							
	\dot{u}_{5}	0							
	\hat{u}_{6}	0							
	\dot{k}_{3}	0			$\hat{I}_{1}\left(k_{3}\right) \equiv 0$				$\hat{\pi}_{1}^{+}\left(k_{3}\right) \equiv 0$
$\varepsilon=1$	\hat{k}_{31}	0							
	$\dot{k}_{32}, k_{3,3,4}$	0							
	\hat{k}_{3}	0	$\widehat{I}_{2}\left(k_{3}\right) \equiv 0$	$\widehat{I}_{2}\left(k_{3}\right) \equiv 0$		$\dot{\pi}_{2}^{\times}\left(k_{3}\right) \equiv 0$	$\hat{\pi}_{2}^{+}\left(k_{3}\right) \equiv 0$		
$\varepsilon=-1$	\hat{k}_{31}	0							
	$\dot{k}_{32}, k_{3,3,1}$	0							
	$\hat{h}_{1 a}$	0			$\hat{I}_{1}\left(h_{1 a}\right) \equiv 0$			$\hat{\pi}_{a}^{+}\left(h_{1 a}\right)$	$\hat{\pi}_{1}^{+}\left(h_{1 a}\right)$
	$\hat{h}_{1 a, 1}$	0							
	$\dot{h}_{1 b}$	0			$\hat{I}_{1}\left(h_{1 b}\right) \equiv 0$				$\hat{\pi}_{1}^{+}\left(h_{1 b}\right) \equiv 0$
	$\hat{h}_{1 b, 1}$	0							
	$\hat{h}_{2 a}$	0	$\widehat{I}_{2}\left(h_{2 a}\right) \equiv 0$	$\hat{I}_{2}\left(h_{2 a}\right) \equiv 0$		$\hat{\pi}_{2}^{\times}\left(h_{2 a}\right) \equiv 0$	$\hat{\pi}_{2}^{+}\left(h_{2 a}\right) \equiv 0$	$\hat{\pi}_{a}^{+}\left(h_{2 a}\right)$	
	$\hat{h}_{2 a, 1}$	0							
	$\hat{h}_{2 b}$	0	$\widehat{I}_{2}\left(h_{2 b}\right) \equiv 0$	$\widehat{I}_{2}\left(h_{2 b}\right) \equiv 0$		$\hat{\pi}_{2}^{\times}\left(h_{2 b}\right) \equiv 0$	$\hat{\pi}_{2}^{+}\left(h_{2 b}\right)$		
	$\hat{h}_{2 b, 1}$	0							$\dot{\pi}_{1}^{+}\left(h_{1}\right) \equiv 0$
	\hat{h}_{1}	0			$\widehat{I}_{1}\left(h_{1}\right) \equiv 0$				
	\hat{h}_{2}	0	$\widehat{I}_{2}\left(h_{2}\right) \equiv 0$	$\widehat{I}_{2}\left(h_{2}\right) \equiv 0$		$\hat{\pi}_{2}^{\times}\left(h_{2}\right) \equiv 0$	$\hat{\pi}_{2}^{+}\left(h_{2}\right) \equiv 0$		
	\hat{h}_{a}	0						$\hat{\pi}_{a}^{+}\left(h_{a}\right) \equiv 0$	
	\hat{h}_{b}	0							
	\hat{h}_{3}	0							
	\hat{h}_{6}	0	0	0	0	0	0	0	0

Table 2 (b)
$q \equiv-1(\bmod 4)$
$G_{2}(q)=$ Central char. on 2^{\prime}-elements $(\bmod 2)$
$q-1=2 r^{\prime}, q+1=2^{d} \cdot r, r$ and r^{\prime} odd

	defect:	2	$2 d$	$d+1$	$d+2$	$2 d+1$	$d+1$	$d+2$	$2 d+1$
	$2,3 \nmid q$	ω_{1}	ω_{2}	ω_{a}	$\omega_{1 a}, \omega_{1 a}^{\prime}$	$\omega_{2 a}, \omega_{2 a}^{\prime}$	ω_{h}	$\omega_{1 h}, \omega_{1 h}^{\prime}$	$\omega_{2 h}, \omega_{2 h}^{\prime}$
	1	1	1	1	1	1	1	1	1
	\hat{u}_{1}								
	\hat{u}_{2}								
	\hat{u}_{3}								
	\hat{u}_{4}								
	\hat{u}_{5}								
	\hat{u}_{6}								
	\hat{k}_{3}	$\dot{\pi}_{1}\left(k_{3}\right)$					$\dot{\pi}_{h}\left(k_{3}\right)$	$\hat{\pi}_{b}^{\#}\left(k_{3}\right)$	
$\varepsilon=1$	\dot{k}_{31}								
	$\hat{k}_{32}, k_{3,3.1}$								
	\dot{k}_{3}		$\hat{\pi}_{2}\left(k_{3}\right)$	$\hat{\pi}_{a}\left(k_{3}\right)$	$\hat{\pi}_{a}^{\# \#}\left(k_{3}\right)$	$\hat{\pi}_{2}^{* a}\left(k_{3}\right)$			$\hat{\pi}_{2}^{* h}\left(k_{3}\right)$
$\varepsilon=-1$	\hat{k}_{31}								
	$\dot{k}_{32}, k_{3} 3.1$								
	$\hat{h}_{1 a}$	$\dot{r}_{1}\left(h_{1 a}\right)$		$\hat{\pi}_{a}\left(h_{1 a}\right)$	$\hat{\pi}_{a}^{\#}\left(h_{1 a}\right)$				
	$\hat{h}_{1 a, 1}$								
	$\hat{h}_{1 b}$	$\dot{\pi}_{1}\left(h_{1 b}\right)$					$\hat{\pi}_{b}\left(h_{1 b}\right)$	$\hat{\pi}_{b}^{\#}\left(h_{1 h}\right)$	
	$\hat{h}_{1 h, 1}$								
	$\dot{h}_{2 a}$		$\hat{\pi}_{2}\left(h_{2 a}\right)$	$\dot{\pi}_{a}\left(h_{2 a}\right)$	$\hat{r}_{a}^{*}\left(h_{2 a}\right)$	$\hat{\pi}_{2}^{* a}\left(h_{2 a}\right) \equiv 0$			$\hat{\pi}_{2}^{* h}\left(h_{2 a}\right)$
	$\hat{h}_{2 a} 1$								
	$\hat{h}_{2 b}$		$\hat{\pi}_{2}\left(h_{2 h}\right)$			$\hat{\pi}_{2}^{*}\left(h_{2 b}\right)$	$\dot{\pi}_{h}\left(h_{2 h}\right)$	$\hat{\pi}_{h}^{\#}\left(h_{2 h}\right)$	$\dot{\pi}_{2}^{* h}\left(h_{2 h}\right) \equiv 0$
	$\hat{h}_{2 h, 1}$								
	\dot{h}_{1}	$\dot{\pi}_{1}\left(h_{1}\right)$							
	\dot{h}_{2}		$\dot{\pi}_{2}\left(h_{2}\right)$			$\hat{\pi}_{2}^{* a}\left(h_{2}\right)$			$\hat{\pi}_{2}^{*}\left(h_{2}\right)$
	\hat{h}_{a}			$\dot{\pi}_{a}\left(h_{a}\right)$	$\hat{\pi}_{a}^{\#}\left(h_{a}\right)$				
	\hat{h}_{b}						$\dot{\pi}_{h}\left(h_{h}\right)$	$\dot{\pi}_{h}^{\#}\left(h_{h}\right)$	
	\hat{h}_{3}								
	\dot{h}_{6}	0	0	0	0	0	0	0	0

Bibliography

1. D. W. Burry, Components of induced modules, J. Algebra 87 (1984), 483-492.
2. R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley, New York, 1985.
3. B. Chang and R. Ree, The characters of $G_{2}(q)$, Symposia Mathematica, vol. 13, Academic Press, London, 1974, pp. 395-413.
4. H. Enomoto, The characters of $G_{2}(q), q=3^{n}$, Japan. J. Math. 2 (1976), 191-248.
5. K. Erdmann, Algebras and semidihedral defect groups. I, Proc. London Math. Soc. 57 (1988), 109-150.
6. 123-165.
7. G. Hiss, On the decomposition numbers of $G_{2}(q)$, J. Algebra 120 (1989), 339-360.
8. G. Hiss and J. Shamash, 3-blocks and 3-modular characters of $G_{2}(q)$, J. Algebra 131 (1990), 371-387.
9. R. B. Howlett and R. W. Kilmoyer, Principal series representations of finite groups with split BN-pairs, Comm. Algebra 8 (1980), 543-583.
10. G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia Math. Appl., vol. 16, Addison-Wesley, Reading, MA, 1981.
11. P. Landrock, Finite group algebras and their modules, London Math. Soc. Lecture Notes, vol. 84, Cambridge Univ. Press, Cambridge, 1983.
12. J. Shamash, Blocks and Brauer trees for groups of type $G_{2}(q)$, The Arcata Conference on Representations of Finite Groups, Part 2, Amer. Math. Soc., Providence, RI, 1987, pp. 283-295.
13. $q+1$, J. Algebra 123 (1989), 378-396.
14. Blocks and Brauer trees in the groups $G_{2}(q)$ for primes dividing $q \pm 1$, Comm. Algebra 17 (1989), 1901-1949.
15._, Blocks and Brauer trees for the groups $G_{2}\left(2^{k}\right), G_{2}\left(3^{k}\right)$, Comm. Algebra 20 (1992), 1375-1387.
15. D. L. White, The 2-blocks and decomposition numbers of $S p(4, q), q$ odd, J. Algebra 131 (1990) 703-725.

Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 368, D- 6900 Heidelberg, Germany

E-mail address: hiss@kalliope.iwr.uni-heidelberg.de
Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

[^0]: Received by the editor August 20, 1990 and, in revised form, August 8, 1991.
 1991 Mathematics Subject Classification. Primary 20C30, 20G40.

