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2-BLOCKS AND 2-MODULAR CHARACTERS 
OF THE CHEVALLEY GROUPS G2(q) 

GERHARD HISS AND JOSEPHINE SHAMASH 

ABSTRACT. We first determine the distribution of the ordinary irreducible char- 
acters of the exceptional Chevalley group G2(q), q odd, into 2-blocks. This 
is done by using the method of central characters. Then all but two of the irre- 
ducible 2-modular characters are determined. The results are given in the form 
of decomposition matrices. The methods here involve concepts from modular 
representation theory and symbolic computations with the computer algebra 
system MAPLE. As a corollary, the smallest degree of a faithful representation 
of G2(q), q odd, over a field of characteristic 2 is obtained. 

1. INTRODUCTION 

This paper continues the investigations of the modular characters of the finite 
Chevalley groups G = G2(q). In a series of papers [12, 13, 14, 15, 7, 8] the 
authors have investigated the p-blocks, the Brauer trees, and the p-modular 
characters for odd p. Here, we finally consider the case p = 2 and q odd. 

We determine the distribution of the ordinary characters of G into 2-blocks 
and all but two of the irreducible Brauer characters. A complete solution seems 
to be beyond the scope of the methods of this paper. However, the results are 
sufficient to find the minimal degree of a faithful 2-modular representation of 
G. In [16], White has obtained similar results for the groups Sp4(q) . 

Throughout the paper, we have to distinguish between the two cases q 1 
(mod 4) and q -1 (mod 4). The ordinary characters of G are taken from 
[4, 3]. Our notation is that of Chang and Ree in [3]. The blocks are determined 
by using the method of central characters. With the help of lemmas from [13, 
14] the distribution into blocks and the exceptional characters are calculated. 

The methods for finding the decomposition matrices are much the same as 
those used in [7]. We determine a basic set of Brauer characters, consisting 
of some-but not all-of the nonexceptional characters in the block. Then we 
produce a large set of projective characters. The next step consists in finding a 
maximal linearly independent subset of these which approximates the projective 
indecomposables as closely as possible. This gives us a basic set of projectives. 
The projectives are now written in terms of this basic set. Those which require 
negative coefficients are used to refine the basic set. 
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Unfortunately, one does not know a priori which characters to induce, or 
which characters to tensor with, to obtain the required information. So one 
has to produce as many projective characters as possible to begin with. This 
involves a huge amount of calculations, which would not be possible without 
computer support. In our case these calculations were done with the help of 
the computer algebra system MAPLE, which was developed by the Symbolic 
Computation Group at the University of Waterloo. Once MAPLE has done its 
job and the proofs are given in the form below (?4), they can in principle be 
checked by hand. So nobody has to worry about how these programs work, or 
about the internal data structure used to represent the characters. We are sure 
that other exceptional groups of Lie type can be dealt with in a similar way. 

2. RESULTS 

2. 1. Explanation of the tables. In this section we present the 2-modular de- 
composition numbers of G = G2(q), q odd. We note that the 2-blocks differ 
substantially from the p-blocks where p $& 2 (see [8, 13, 14]). In particular, 
note the exceptional families in B1. We start with some explanation of the 
tables. The ordinary characters in a block fall naturally into two distinct sets. 
The first set consists of the so-called nonexceptional characters. Its members 
all belong to a fixed geometric conjugacy class of characters (see [2, ? 12.1]). In 
case of the principal block, the nonexceptional characters are exactly the unipo- 
tent characters lying in the block. Their restrictions to the 2-regular conjugacy 
classes generate the ring of generalized Brauer characters, but in general are lin- 
early dependent as class functions. However, a basic set can be selected from 
these. The decomposition of these basic set characters is given in the upper half 
of the decomposition matrix. 

The remaining characters in a block are the so-called exceptional characters. 
They fall into families of characters which have the same restriction to 2-regular 
classes. Only one row is printed for any one family of exceptional characters 
in the lower half of the decomposition matrix. A family is indicated by curly 
brackets. The number of exceptionals in each family is printed in the last col- 
umn of the decomposition matrix. The description of the exceptionals appears 
in ?3. 

The first column of the decomposition matrix gives the degrees of the ordi- 
nary characters. From these, the degrees of the irreducible Brauer characters in 
the block are easily derived. They are printed below the decomposition matrix. 

In all of the following tables, missing entries are 0. 

2.2. The case 4 1 q - 1. Let q= 1 (mod 4). Denote q - 1 = 2d * r and 
q+ 1 = 2r', r and r' odd. So, d > 2 and IG2(q)12 = 2d+2. 

2.2.1. The principal block B1. Tables (a) and (b) give the decomposition 
matrix of the principal 2-block of G and the degrees of the irreducible Brauer 
characters, respectively. 

Remarks. (i) 0 < a < q- 1; if 3 | q, we only get the weaker bound 0 < a < 2q. 
(ii) 0 < l< (q + 2). 
(iii) If 3 does not divide q, we have (012(1) > 1 (q- 1)2(q+1)(q3+2q2+q+3). 
(iv) If 3 1 q, we have (912(1) >1 (q- 1)2(q3+2q2+ 4q+ 3). 
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TABLE (a) 

Degrees Char. (9i1 (017 (018 (013 (014 (015 (012 No. of Char.'s 

1 Xi I 1 1 

Iq(q - 1)2(q2 + q + 1) X17 1 

I 
q(q - 1)2(q2 - q + 1) X18 1 

lq(q4+q2+1) X13 1 1 1 

q(q4 + q2 + 1) X14 1 1 1 

1 q(q + 1)2(q2 - q + 1) X15 1 1 1 

q6 X12 I a 11 

Iq(q + 1)2(q2 + q + 1) X16 1 

(q4+ q2 +1) {X22} 1 

q(q4 + q2 +1) {X23} 1 1 1 1 1 

q(q4 + q2 + 1) {X24} 1 1 1 1 1 1 

q2(q4 + q2 + 1) {X21} 1 a /3 1 1 1 1 1 

(q + 1)(q 4+ q + 1) {Xa} 2 1 1 1 2 2(2d - 2) 

q(q +1l)(q4 +q2 + 1) {Xia} 2 a+ 1 B +1 1 2 2 1 2(2d 
- 2) 

(q + 1)(q 4+ q + 1) {Xb} 2 1 1 1 2 2(2d - 2) 

q(q + 1)(q 4+ q2+1) {Xlb} 2 a+ 1 B + 1 2 1 2 1 2(2d-2) 

(q2 _ 1)(q4+ q2 +1) {Xa} a 2 1 2d 

(q2 _ )(q4 + q2+1) {Xb} a / 2 1 12d 

(q + 1)2(q4 + q2 + 1) {X1} 4 a+2 fl+2 2 2 4 1 I (2d - 4)(2d - 2) 

TABLE (b) 

Char. Degree 

(011 1 

(017 1 q(q - 1)2(q2 + q + 1) 

(018 1 q(q - 1)2(q2 - q + 1) 

(013 I(q- 1)(q4+q3+2q2+2q+3) 

(014 I(q- 1)(q4+q3+2q2+2q+3) 

(915 q2(q2 +1) 

(012 6(q - 1)2(6q4+ (8 - 3a -/8)q3 + (10 - 3a + f)q2 + (8 - 3a - f)q + 6) 

2.2.2. The block B3 in case q -1 (mod 3). For this case, Tables (c) and (d) 
give the decomposition matrix of B3 and the degrees of the irreducible Brauer 
characters, respectively. 
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TABLE (C) 

Degrees Char. f 32 (033 (031 No. of Char.'s 

q3 + 1 X32 1 

q(q + 1)(q3 + 1) X331 1 

q3(q3 +1) X31 1 1 1 

q(q + 1)(q4 + q2 + 1) {Xia} 1 1 1 2d 

(q + 1)(q4 + q2 + 1) {Xla} 1 1 2d 

(q2 - 1)(q4 + q2 + 1) {Xa} 1 1 2d 2 

(q + 1)2(q4 + q2 + 1) {X1} 2 2 1 (2d - 2)(2d- 1) 

TABLE (d) 

Char. Degree 

(032 (q+ 1)(q2- q + 1) 

(033 q(q + 1)2(q2 - q + 1) 

(031 (q2 - 1)(q4 + q2 + 1) 

2.2.3. The block B3 in case q -1 (mod 3). For this case, Tables (e) and (f) 
give the decomposition matrix of B3 and the degrees of the irreducible Brauer 
characters, respectively. 

TABLE (e) 

Degrees Char. (032 (033 (031 No. of Char.'s 

q3- 1 X32 1 1 

q(q- 1)(q3- 1) X31 1 

q3(q3- 1) X31 1 1 1 1 

q(q- 1)(q4 +q2 + 1) {X2b} 1 1 1 

(q- 1)(q4 + q2 + 1) {XIb} 1 1 1 

(q2- 1)(q4+q2+ 1) {Xb} 2 1 1 2d 1 

TABLE (f) 

Char. Degree 

(032 (q - 1)(q2 + q + 1) 

033 q(q - 1))2(q2 + q + 1) 

931 (q - 1 )2(q2 + 1 )(q2 + q+1) 



CHARACTERS OF THE CHEVALLEY GROUPS G2(q) 649 

Remark. The defect group of this block is a Sylow 2-subgroup of SU3 (q), the 
special unitary group in three dimensions, and therefore is semidihedral of 
order 2d+2. Blocks with such defect group and decomposition matrix have 
been considered in [6, Lemma 11.4]. 

2.2.4. The blocks Bia. Tables (g) and (h) give the decomposition matrix for 
the blocks Bia and the degrees of the irreducible Brauer characters, respectively. 

TABLE (g) 

Degrees Char. (Oja (Ola No. of Char's 

(q+ 1)(q 4+q2 + 1) Xa 1 1 

q(q+ 1)(q 4+q2 + 1) Xla 1 1 

(q + 1)(q +q+1) {Xla} 1 2d 

q(q + 1)(q4 + q2 + 1) {Xia} 1 1 2d 

(q2 - 1)(q4 + q2 + 1) {Xal} 1 22d 

(q + 1)2(q4 + q2 + 1) {X1} 2 1 2 d(2d 1) 

TABLE (h) 

Char. Degree 

fa (q + 1)(q 4+ q2 + 1) 

fl1a (q12 - )(q4+ q2 +1) 

Number of blocks Bla: 
if q 1 (mod 3): 1 (r - 3); 
if q 1 (mod3): (r-1). 

2.2.5. The blocks Bib . Replace a by b in Tables (g) and (h). 
Number of blocks Blb: 1 (r - 1). 

2.2.6. The blocks B2a . These blocks have the decomposition matrix given in 
Table (i). 

TABLE (i) 

Degrees Char. (O2a (92a No. of Char.'s 

(q- 1)(q 4+q2 + 1) X2a 1 1 

q(q- 1)(q 4+q2 + 1) X2a 1 1 1 

(q- 1)(q 4+q + 1) {X2a} 1 1 

q(q- 1)(q4 +q2 + 1) {X2a} 1 1 1 

(q - 1)2(q4 + q2 + 1) {X2} 1 1 

(q2 -1)(q4 +q2 + 1) {Xa} 2 1 2d 1 
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The degrees of the irreducible Brauer characters are given in Table (j). 
Number of blocks B2a: I(r' - 1). 

TABLE (j) 

Char. Degree 

I4a (q-l )(q4 + q2 + 1) 

(02a (q-l1)2(q4 + q2 + 1) 

Remark. The defect group of this block is a Sylow 2-subgroup of U2(q), the 
unitary group in two dimensions, and therefore is semidihedral of order 2d+2 . 
Blocks with such defect group and decomposition matrix have been considered 
in [5, Lemma 8.8]. 

2.2.7. The blocks B2b. Replace a by b in Tables (i) and (j). 
Number of blocks B2b: 

if q -1 (mod 3): I(r'-3); 
if q -1 (mod 3): (r' -1). 

2.2.8. The blocks Bx, , Bx2, Bxa, and Bxb. Bx,: Contains 22d characters 
of type X1. 

Number of blocks: 
if q =_ 1 (mod 3): 11 (r - 3) 2 

if q t 1 (mod 3): 1-(r- 1)(r- 5). 
Bx2: Contains four characters of type X2 . 
Number of blocks: 

if q -1 (mod 3): 1 (r' - 3)2; 

if q -1 (mod 3): 11 (r' - 1)(r' - 5). 
BX., a = a or b: Contains 2d+1 characters of type Xa. 
Numberofblocks: I(r- 1)(q- 1). 
These are blocks with exactly one irreducible Brauer character, and so the 

decomposition matrix just consists of a column of l's. 

2.2.9. The characters X19, X19 and the characters of types X3, X6 constitute 
blocks of defect 0. 

2.3. The case 4 1 q + 1. Let q = -1 (mod 4). Now denote q + 1 = 2d * r 
and q - 1 = 2r', r and r' odd. So, d > 2 and IG2(q) 12= 2d+ 2. 

2.3.1. The principal block B1 . The principal 2-block of G has the decompo- 
sition matrix given in Table (k). 

Remarks. (i) 1 < a < q- 1; if 3 1 q, we only get the weaker bound 1 < a < 2q. 
(ii) 1 < fl < (q+2). 
(iii) In case q = 3, we have ,B = 1. Ryba has shown, using some sophisti- 

cated extensions of Parker's MEAT-AXE, that a = 2 in this case. 
(iv) If q > 3, the degrees of the irreducible Brauer characters are the same 

as in the case q 1 (mod 4). 
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TABLE (k) 

Degrees Char. I 'I 17 18 (P13 ( f14 (P 12 No. of Char.'s 

1 Xi I 1 1 

Iq(q - 1)2(q2 + q + 1) X17 1 1 

lq(q - 1)2(q2 - q + 1) X18 1 1 

Iq(q4 + q2 + 1) X13 1 1 1 

1q(q4 + q2 + 1) X14 1 1 1 

4q(q + 1)2(q2 - q + 1) X15 1 1 1 

q6 X 12 I ca 1 

q(q + 1)2(q2 + q + 1) X16 

(q4 + q2 + i) {X22} 1 1 1 

q(q4 + q2 + 1) {X23} 1 1 1 1 1 1 

q(q4 +q2 + 1) {X24} 1 1 1 1 1 1 

q2(q4+ q2 + i) {X21} 1 a fi 1 1 1 1 1 

(q -)(q 4+ q2+) {Xa} 1 1 1 (2d 

q(q -il)(q4+ q2+iI) {X2a} a- fl-i 1 1 2 

(q -)(q 4+ q2 + 1) {X2b} 1 1 1 (2d _ 

q(q -)(q 4+ q2+) {X2b} a- - 1 1 2 

(q2 -)(q4+ q2 + 1) {Xa} a f 2 1 12d 

(q2-i)(q4+q2+i) {Xb} a fi 2 1 1 2d 

(q - 1)2(q4+ q2 + 1) {X2} a-2 - 2 1 12(2d - 4)(2d - 2) 

2.3.2. The block B3 in case q 1 (mod 3). In this case, B3 has the decom- 
position matrix given in Table (1). 

The degrees of the irreducible Brauer characters are as in case 2.2.2. 

TABLE (1) 

Degrees Char. (P32 (P33 (P31 No. of Char.'s 

q3+1 X32 1 

q(q + 1)(q3 + 1) X331 1 

q3(q3 + 1) X31 1 1 1 

q(q + 1)(q4 +q + 1) {Xia} 1 1 I 1 

(q + i)(q4 + q2 + 1) {X/a} 1 1 1 

(q2 - 
1)(q4 + q2 + 1) {Xa} 

1 2d 

Remark. The defect group of this block is a Sylow 2-subgroup of SL3(q), 
the special linear group in three dimensions, and therefore is semidihedral of 
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order 2d+2 . Blocks with such defect group and decomposition matrix have been 
considered in [6, Lemma 11.6]. 

2.3.3. The block B3 in case q -1 (mod 3). In this case, B3 has the 
decomposition matrix given in Table (m). 

TABLE (m) 

Degrees Char. 032 (933 (031 No. of Char.'s 

q3 - 1 X32 1 1 

q(q- 1)(q3- 1) X31 1 

q3(q3- 1) X31 1 Y 1 1 

q(q- 1)(q4 + q2 + 1) {X2b} 1 y-I 1I 2d - I 

(q-1)(q4 +q2 + 1) {X2b} 1 1 2d_ 

(q2 - )(q4 +q2 + 1) {Xb} 2 1 1 2d 

(q 1)2(q4 + q2 + 1) {X2} y-2 1 1(2d-2)(2d _ 

Remark. 1 <Y< I (q+1). 
The degrees of the irreducible Brauer characters are given in Table (n). 

TABLE (n) 

Char. Degree 

VP32 (q - 1)(q2 + q + 1) 

(033 q(q - 1)2(q2 + q + 1) 

(031 (q - 1)2(q2 + q + 1)(q2 + (1 - y)q + 1) 

2.3.4. The blocks Bla . These blocks have the decomposition matrix given in 
Table (o). 

TABLE (O) 

Degrees Char. Vla (Pla No. of Char.'s 

(q + 1)(q4 +q2 + 1) Xia 

q(q+ 1)(q4 +q2 + 1) Xia 1 1 

(q + 1)(q4 + q2 + 1) {Xi} 

q(q+ 1)(q4 +q2 + 1) {Xia} 1 1 1 

(q + 1)2(q4 + q2 + 1) {Xi } 2 1 1 

(q2 1)(q4 + q2 + 1) {Xa} 1 2d 

The degrees of the irreducible Brauer characters are as in case 2.2.4. 

Remark. The defect group of this block is a Sylow 2-subgroup of GL2(q), 
the general linear group in two dimensions, and therefore is semidihedral of 
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order 2d+2. Blocks with such defect group and decomposition matrix have 
been considered in [5, Lemma 8.6]. 

2.3.5. The blocks BIb . Replace a by b in Table (o). 

2.3.6. The blocks B2a . These blocks have the decomposition matrix given in 
Table (p). 

TABLE (P) 

Degrees Char. (p2a (P2a No. of Char.'s 

(q-1)(q4+q2+ 1) X2a 1 1 

q(q - 1)(q4 + q2 + 1) X2a 1 1 1 

(q - 1)(q4 + q2 + 1) {X2a} 12d _ 

q(q - 1)(q4 + q2 + 1) {X2a} 1 1- 2d _ 

(q2 - 1)(q4 + q2 + 1) {Xa } 2 1 12d 

(q _1)2(q4+q2+1) {X2} 2d(2d-1) 

The degrees of the irreducible Brauer characters are as in case 2.2.6. 

2.3.7. The blocks B2b. Replace a by b in Table (p). 

2.3.8. The blocks Bx, Bx2 , BXa , and Bxb . These are blocks with exactly one 
irreducible Brauer character, and so the decomposition matrix consists just of 
a column of l's. 

Corollary. If 3 does not divide q, the smallest degree of a faithful representation 
of G over a field of characteristic 2 is q3 + e, where e = + 1 is such that q- 
(mod 3). If q = 3f f > 2, thesmallestdegreeis q2(q+ 1), andif q = 3, the 
smallest degree is 14. 

3. PROOFS: BLOCKS 

3.1. Preliminaries. As in [8, 13, 14], the blocks are determined by examination 
of the central character tables (mod 2). These are given in the Appendix for 
all characters of G2(q) of nonzero defect. 

We rely on the fact that two characters are in the same 2-block if and only 
if they determine the same central character (mod 2). 

3.1.1. We first recall facts and notation from [3, 14]: 

IG2(q)l = q6(q6 - l)(q2 _ 1). 

The following subgroups are the maximal tori of G2(q): 

H1 -Cq-I X Cq-I, H3 - Cq2+q+l, 

H2 -Cq+ I X Cq+ I, H6 Cq2-q+1, 

Ha -Cq2-1 -Hb- 

For a e I{l, 2, a, b, 3, 6}, denote elements of Ha by h,, and complex linear 
characters of H, by 7r,,; fta(ha) is the sum of the images under 7r, of the 
conjugates of ha in Ha. As in the previous papers, 7r, will usually denote a 
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character such that Xa(7ra) is irreducible, 7r+ are of order 3, and 7rx are of 
order 2, and Ia will denote the trivial character on Hao. For a = a or b, let 
the characters 7r* and 7r* be such that (7*)q+l - J_ (7#)q-1, and 7r* 7# 

are of order > 3. 
We say 

1 (i, I) 
if 7(i(hla) = pi, lr(hlb) = pi, where p is a primitive complex (q - 1)st root 
of unity and hIa E HI nHa , hlb E HI nHb , and IhIal = q - 1 = Ihlbl. Similarly 
for 7r2, replace q - 1 by q + 1 and hla, hlb by h2a, h2b . 

3.1.2. We note that for primes p :$ 2, the central character tables (modp) 
contain nonzero entries for the unipotent class sums. This made it easier to 
determine the blocks. When two central characters coincided on the unipotent 
class sums, we had only to find criteria as to when fra(h) _ra(h) (mod p) for 
h in a maximal torus Ha. 

For p = 2, however, we see that for all unipotent u we have wo, (r) 0_ 
(mod 2) for all X of nonzero defect. Hence, we need also to determine when 

ita(h) _= i(h) (mod 2) 
for h E Ha nfl Ha and Hfl different tori. 

To do this, we first find some 7r' such that ry(h) _r' (h) (mod 2), and 
then we use the lemmas in [14] to get all 7a such that fra(h) = ir' (mod 2). 

The relevant lemmas (3.4, 5.3, and 6.3) in [14] still hold for p = 2. These 
essentially say that if X is a character defined by 7a (for a E {a, b, 1, 2}), 
and we want to find all X' defined by 7r' such that if (ha) = Ha then 

(*) (a (h dk) _ (hadk) (modp) for all k, 

then it is sufficient to find all X' defined by 7r' such that 

7ra(h) r'(h) (modp) for all p-regular h in Ha. 

We note that an error appears in the proof of Lemma 3.4 in [14] which needs 
correction to allow the proof to work for p = 2. 

We needed to show that for a = a or b, the congruence (*) holds if and only 
if Pa(X) -PT(x) (mod p) . Here, Pa(X) = (X - a)(X a (-1 )(X 

_ aq) (X _ a -q) 

U = 7ra(hpd) , and z = r' (hpd) . Then, if A(a) = a + v-' + aq + q-q, we have 

Pa(X) = X4 - A(a)x3 + (2 ? aq+l ? -(q+l) ? -q-l ? al-q)x2 - A(a)x + 1. 

In [14] we had an error in the coefficient for x2. In fact, aq+I = ia(h p) and 

aq-I = 7 (h?P), and hla and h2a have only two conjugates in Ha, so that 

fa(hl$) = oq+l + o-(q+l) da(hPj) = aq-1 + ol-q 

and if we replace pd by 2d+ I, we see that the lemma holds (mod 2). 

3.1.3. G2(3k). The central characters (mod 2) for G2(3k) essentially coin- 
cide with the tables for G2(q), 2, 3 { q. Namely, for all unipotent u $ 1 in 
G2(3k) we have o, (fi) 0_ (mod 2) for all central characters of nonzero de- 
fect, as in the tables in the Appendix. For the remainder of the 2-regular class 
sums, after relabelling as in [7], these agree exactly with the tables for G2(q), 
2, 3 q. 
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3.2. q _ 1 (mod 4). 

3.2.1. The principal block B1 . Clearly, X1I = 1G X12, X13, X14, X15, X16, 
X17, X18 E B1- 

Since (7r1X)2 = 1, we have 7ir(hl) = +1 for h, E H1, so that 7r,(h ) I1 
(mod 2). This implies X21, X22, X23, X24 E B1 - 

If 3 { q, we verify that X31, X32, X33 ? B1: 
(a) If q _1 (mod 3), we would need frt(hla) 0 0 (mod 2). However, if 

Ihial = q- 1, then 7tj (hla) = w9, so that 

irt(hla) = 3(wD + wo2) 1 (mod 2). 

(b) If q _-1 (mod 3), then 7rj+(h2b) = co for Ih2bI = q? 1, thus h(h2b) 
1 (mod 2) and so X33 B1. 

We also have 7r+(b) = w for IhbI = q2 _1 . Therefore, 7r+(2b) = +(q) 
=w and 7rj+(h2b) ==ow2=1 (mod 2), and so X31, X32 f B1. 

We now look at the exceptional families: 
X1: We want (i, j) -(0, 0) (mod 2) as in [14, ?5.13] so that 

irl (h 2') = ir (h 2') = 6 -= 0 (mod 2) . 

We have (2d - 1)2 solutions to 

i=sr, j=tr, I<s,t<2d-l. 

We exclude 2(2d - 1 ) pairs (s, t) such that 3s t (mod 2d = t (mod 2d), 

but these have a common solution, namely s = t = 2d - 1 . We also exclude 
2(2d - 1) pairs (s, t) that solve 2t - 3s (mod 2d) or 2s t (mod 2d) (one 
solution s for each t : 2d- 1), so we get 

(2 d 1)2-2(2d_ 1) + 1 -2(2d - 2) = (2d - 4)(2d - 2), 

and dividing by 12 to get the number of X1 yields the result in ? 3.2.1. 
XIa, Xfa, Xlb, Xlb: Let a = a or b. All 1r a defined by i* with i# = sr, 

1 < s < 2d - 1, give Xla, Xa E B1, excepting i# - 2d-1 * r, which would be 
of order 2. Since for i 12d- r, we have il and -il with different r*a but 
the same rUa , we get I (2d - 2) characters XIa, Xa in B1 as in ?3.2.1. 

Xa, Xb: By Lemma 3.4 in [14], if 7ra defines Xa (a = a or b), then 

Xa E B1 7fa(had+7)a=h1. 

So, if ra(ha) = Xi, where 1hal = q2 12 = 1and 4 E C, we need i =-O 
(mod rr') . However, q + 1, q - 1I i , so only odd multiples of rr' are possible. 
This yields 1 

*2d+1 = 2d 7ia , and dividing by 4, we get the number of Xa: 2d-2 

Claim. No characters of types X2, X2a, X2a, X2b, X2b are in B1. 

Proof. If X2 E B1, then the 72 defining it must satisfy 7r2 (i, j) (0, 0) 
(mod r') . However, q + 1 = 2r', so 72 is of order 1 or 2, a contradiction. 

Now let a = a or b. For 1hal = q2 - 1 we denote 7(*(ha) = = 

where 4 e C of order q2 - 1 as before. We have 

7ra(h2a) = 7a(haq-1) = aq-1 = a-2 
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Since h 2 is of odd order, we have, if 7ra defines X2a, X' E B1, 

ia (h2 =-4 + a4 0 (mod 2). 

Hence, a?4 = 1. However, q+1 = -1, so a2 is of odd order and therefore 
U2 = 1, giving a = +1. But then, (7r*)2 = 1, which is not possible. E 

3.2.2. The block B3 if q _1 (mod 3). Let B3 be the block containing 
X31, X32, X33 

Note. If IhIal = q - 1 = Ih bl, we have 

7U (hla) = 0), 7rj(hlb) = 1, 

so that 

fj+(k3) = 1 + 1 0 (mod 2) as k3 = I I ~~~~~~~~~~~~b 
il (hlb) = 6 0 0 (mod 2), 

but 
0)3i(hla) = fr1j(hla) = 3(wo + w)2) 1 (mod 2) for 1 < i < 3. 

We also have (using [14, ?5.5]) that if h1 E HI - (HIa U Hlb), then 

Zi (hI) =6(wo + Cw2) 0 (mod 2). 

We then conclude by inspection of the tables that since ot x(hIa) 0 (mod 2) 
for X equal to a character of one of the types X2, Xb, X2b, X2b, these are not 
contained in B3 . 

We use Lemma 5.3 from [14] to deal with Xl, Xia, X'a, XIb, XIb 

XI: XI E B3 if it is defined by 7l (i, j), (i, j) _(, 0) (mod r), gives 
22d pairs 

i = 
r 

+ sr j = tr, 0 < s, t < 2d _ 1, 

excluding solutions to 
{ 1+3s 2t (mod2d), 

1 + 3s t (mod 2d), 

t = 0, 

as in [14, ?5.15]. 
For each s there are 2d solutions t to the last two congruences. To the first 

there are no solutions t for odd s, but two solutions t for even s (these are t 
and 2d- I + t for 1 < t < 2d- I ) . As in [ 14], (s, 0) solves all three congruences, 
so we get (22d - 3 * 2d + 2) solutions 7r1 giving 1(2d - 1)(2d - 2) characters 
X1 E B3. 

Xia, X'a: As in [14, ?5.15], we have 2d - 1 characters of these types in B3 
defined by 

7rla (2i#, 3i#) _+ (, o) (modr), 

where we get 
i# 2rd I + tr O < t < 2d1 

(excluding t = 4(2d - 1) if 2d = 1 (mod 3) and t = 2(2d - 2) if 2d - 
(mod 3)). 
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Xlb, X4b ? B3 as in [14, ?5.15]. 
Xa, X2a, X2a: By the note at the beginning of ?3.2.2, we need to find 7ra 

defining one of X2a, X2a such that 

{ ?a(hia) 1 (mod 2), Ihial = r, 
ita(h) 0_ 0(mod 2), h E Ha\HIa of odd order. 

These conditions hold for 7r+. 

Lemma. If a, z are of odd order and aq2- =q2-1 - 1, then 

a+(a_ _ z+z< (mod2) X &i' = z 
Proof. = is obvious, and =X follows from the fact that the left-hand side 
implies that 

(x -a)(x -ao1)_(x-T)(x-T-1) mod2, 

so that z =_ a" (mod 2), giving also equality since they are of odd order. E 

Hence, if X2a, X~a E B3 are defined by 7r* and 7r*(ha) - ;(q-l)i, then by 
the lemma, since 7ra(hIa) 1 (mod 2), we must have 7r*(hla) = wOhl; but then 

09) = a*1(hla) = 7r*(hq+l) = $(q-l)i*(q+l) = 

which is a contradiction. 

Conclusion. X2a, X2a ? B3 
Xa: Again, we need 7ra such that on odd-order elements 7ra = 7r +, and by 

Lemma 3.4 in [14], only such 7ra are possible. In other words, for Ihal = q2 _ 1 
we need 

ra (h2d+1) = -)I 

so that, if r I(ha) = X', we must have 

i + ? I rr' (mod rr'). 

We exclude all i divisible by q + 1 or q - 1, so we need odd multiples of 1 rr' 
that are not divisible by 3. This gives us -(3 * 2d+1) . 2 = 2d + 1 different i, 
and so leaves 2d- characters Xa in B3 . 

3.2.3. The block B3 if q -1 (mod 3). Let B3 be the block containing 

X31, X32. We calculate 7rj+: If lhb1 = q2 _ 1, then 7rj+(hb) = 
(0+1, so that 

ir+(h2b) = t+ (hq )) =w + w2?_ 1 (mod 2), 

and for h f H2b one has ft+(h) 0 (mod 2). 
Hence, we have X33 E B3, since 

r+ e+(O, 3(q + 1)), 

so that 

+ (h 2) = 6(a + o2) 0 (mod 2), i2 (h2a) = 6 0 (mod 2), 

+(k3) = ft+(h 3-+1)) = 0 (mod 2) and ir+(h2b) = 3(w +? )2) = 1 (mod 2). 

We exclude all characters X with EoX(h2b) 0 (mod 2), namely XI, XIa, 
XI (a = a or b), Xa, X2a, X2a 
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Claim. There holds X2 ? B3. 

Proof. Otherwise, we would need 7r2 +(O, 4 .r') (mod r') . Since 7r2 defining 
X2 cannot be of the form (0, k) (see [14, ?5.8] adapted to 7r2), we must have 

i=r' and j = r ' r ' r, r'. 

However, (r', hr') is of the form (3k, k) and (r', 'r') of the form (3k, 2k); 
(r', r') -(r', 2r') (mod r') and (r', 5r') _ -(r', r') (mod r') . O 

X2b, X2b: We need 7r- 7r + (mod r'), so we must have 7r (hb) = = 

0h1 . This implies that i* is an odd multiple of Ir' (so that (7r*)3 7 1). So 
we have i* = Ir' or 35r' which yield the same r. Hence, we get one pair 
X2b, X2b in B3 corresponding to i* = sr'. 

Xb: Again, we need 7rb = 7r+ on elements of odd order. This yields 7rb(hb) = 

i, i _ +?rr' (mod rr'), so taking multiples of 1rr' not divisible by 3 or by 3 ~~~~~~~~~~~~~~~3 
2d (so that q - 1 i) ,we get 3 * 2d+1 * 2 - 4 = 2d+2 - 4 different i, and so 
2d- 1 characters Xb. 

3.2.4. The blocks Bla. These are a combination of the blocks Bla and Ba 
for p :$ 2 (see [14, ??2.2 and 5.16]). We fix il 1 < il < r - 1, such that 
il j r 2r Let Bla be the block containing Xia, Xfa. As in [14, ?5.16], 
Xlb, X~b f Bla. There are 2d characters Xia, X~a in Bia with i' _ 
(mod r), and 1 2d(2d - 1) = 22d-l - 2d-1 characters X1 with rI1 (i, j): 

i=2i#+sr, j=3i#+tr, O<s, t<2d _ 1 

(excluding 2d pairs (s, t) with 3s _ 2t (mod 2d), two t for every even s). 
We now verify 

X2, X2aX2a, X2b, X2b, Xb Bla 

From the tables we see that we must calculate the values of the lr#a that 
define Xia, Xfa E Ba: Suppose 7r#a (2i#, 3i#); IpI = q - 1. Then 

#r a (hi 2i# +P2i# pla) = P p + 2(pi# + p-i#) 

= 7r#a(hia) + 7r#a(hia)-l (mod 2), 

{:~a (h =2p3i#?+p-3i#)?1?I 
1 
Io I 7tla(*lb) = 2(p + p ) + 1 + 1-O (mod 2), 

and using [14, ?5.5], we obtain 

f(#a(h) _ 0 (mod 2) forhEHl\(HlaUHlb). 

Since XIa, X'a ? BI , we must have jfla(hia) 0 0 (mod 2). 
Clearly, then, Xb, X2, X2b, X lb a Bia. 

If za defines X2a, X~a, then 7jh ) - ,(q1)i for some i*, and ir* (h2a) = 
1 + 1 0 (mod 2). So X2a, X2a 5 Bla. 

Xa We need 7ra such that 7ra 7r# on elements of odd order, where 7r# is 
the map 

7(#(ha) = (q+l)i = pi#I 

i# as in 7.#a defining Xia, Xa E Bla. 
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We indeed have 

fa(h2a)1? + 1 O (mod2), 
ft*(ha) = 2(pi# + p-#i) 0 (mod 2), 

k*(hla) = p2i# + p-2i# _ #a(hla) (mod 2). 

Since ,(q+1)2i# = 7#(hla) and ,(q+ 1)2 = 2(1+q) - p2, we need 7a(ha) such 
that 

2d+i _= 2d+l(q + l)i# (mod(q2 - 1)), 

or 
i = (q + I)i# + srr', I < s < 2 d+I _ I 

Since q + 1 { i, we only take odd s and obtain 2d values of i. As in [14, 
?4.9], qi is of the above form, but not -i, -qi since, if -i _ (q + l)i# 
(mod rr'), there exist t such that 2i#(q + 1) = trr' and 4i# = tr, giving i# I r, 
a contradiction. This then yields I * 2d characters X, . 

3.2.5. The blocks Blb. As in the previous case, we have a block determined 
by an i#, 1 < i# < r- 1 , containing 2d characters Xlb, X'b defined by i#' i# 
(mod r), I . 2d(2d - 1) characters XI defined by 7r - (i, j) such that 

i=i#+sr, j=2i#+tr, 0<s, t<2d_1 

and I * 2d characters Xb with 7(b(hb) = 
2 

b 

i=(q + ? )i# + srr', 1 < s < 2d+ _ 1, s odd. 

Calculating, we see that 
{ 

fr#b(h ) 0 (mod 2), 

j#b(h b) #b(hub) ? 7lb(hlb)1 (mod 2), 

fr #b (h) -0 (mod 2) for h E HI \(Hla U Hlb). 

Therefore, since Xlb, Xb ? B1 , we have fr #b (hlb) 0 0 (mod 2), giving 

X2 5 Xa 5 X2a 5 X2a 5 Xla, Xla 5 Blb, 

and since fb(hlb) - (mod 2) for any 7*(hb) = ,(q-1)i*, we also have X2b, 

X2b l Bib 

3.2.6. The blocks B2a. These are a combination of the blocks B2a and 
Ba in [14, ??2.1 and 2.4]. We fix i*, 1 < i* < r' 1, and let B2a be 
the block containing X2a, X~a defined by i*. Since X2a, X~a ? B1 and 
f(i(ha) fr (hIa) 0 (mod 2), we have ft (h2a) 0 0 (mod 2) for h2a of order 
q + 1 . Hence (by the tables), the only other characters in the block must be of 
types X2, Xa, X2a, X2a 

X2a, X2a: If i#' defines another pair X2a, X2a E B2a, then we have 

(q - 1)2d+1i* - (q - 1)2d+1i*' (mod(q2- 1)) or i# _ i# (mod r'). 

This yields two solutions: i#' = i*, i* + r'. So we have one other pair X2a, X2a 
in the block corresponding to i* + r'. 
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X2: We need 72 7r*a on elements of odd order, where 7r*a (2i*, i*), 
since 

a(h2a )7a (h2a) + 72a (h2a ) -f (h2a) (mod 2), 
{ 7*a(h2b) O (mod 2), 

ft *a(h) = O (mod 2) for h X H2\(H2a U H2b)- 

So we need 72 - (i, j): i = 2i* + sr', j = i* + trf, O < s, t < 1. The 
pair s = 0, t = 1 yields (2i*, i* + r'), which we exclude, as it is of the form 
(2k, k) (mod(q+ 1)) ; the case s = t = 0 is (2i*, i*), again of course excluded. 
Since (i, j) and (i - j, j) give the same ft2, the two pairs (2i* + r', r') and 
(2i*+r', i*+r') give one X2 EB2a- 

Xa: We need 7(a(ha) = V such that 

2d+1i-2d+li*(q- 1) (mod(q2 1)), 

or i = i*(q - 1) +srr', where 1 < s < 2d+1l - and s 2d. This gives 2d+l _ 2 
solutions and 2d - 1 characters Xa. 

3.2.7. The blocks B2b . As in the previous case, for a fixed i*, 1 < i* < r'- 1, 
i* & r' , we have two pairs X2b, X'b corresponding to i* and i* + r'. Also 
one X2 E B2b with 72 - (3i* + r', 2i* + r') or (3i*, 2i* + r'). (The pair 
(3i* + r', 2i*) is excluded, as it is of type (3k, 2k).) The above pair yields the 
same X2, since (i, j) and (3j - i, j) give the same ft2. 

We have 2d - 1 characters Xb corresponding to i = i*(q - 1) + srr', as 
above. 

3.2.8. There remain only those X1, X2, Xa, Xb not in any of the above blocks. 

Lemma. Let a = a or b, and ia(h,) = Qi, where 7, defines X, and i is a 
multiple of r or of r'. Then X, is in B1, B3 or in one of the blocks Bia, B2a 

Proof. First let i = tr, t > 1. If r' I t or i = ?+Irr', then XaI E Bi U B3. 
Otherwise, we show i = (2di* + sr')r for some i*, where 1 < i* < q + 1 and 
1 < s < 2d+ 1, which gives Xa E B2, for the appropriate block B2a defined by 
i* . Since (2d, r') = 1, we can set i* =- 1/2d . t (mod r') (giving 1 < i* < r'). 
Then t = 2di* + mr' for some m. If m > 0 we are done. Otherwise, we look 
at (q2 _ 1) - i, which yields the same rc, (and so the same X,): 

(q 2 _ 1) - i = [(2 d+ I- 2d _ m)r' + 2 d(r' - i*)]r. 

Since now m < 0, we must have, because of t > 1, that m < -2d, so K < 

2d+' - 2d - m < 2d+l as required, and Xc, is in the B2c, defined by r' - i* . 
Now take i = tr' . If i = +Irr' (modrr') or if rr' I i, then X, E BI u B3. 

Otherwise, we show i = (2i# F sr)r' for some i*, 1 < il < q -1 1 < S < 
2d+1, so that X, c Bla for the block B1, defined by i*. Set i' _ t (mod r), 
1<i* <r; then 

t=i' +sr fors>0. 

If 1' is even, we are done, as 1' = 2i# and il defines the block B1, to which X,, 
belongs. If i' is odd, then if s > 0 we have i'+ r even and t = (i'+ r) + (s - 1 )r 
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of the appropriate form, taking il = I (i'? sr) . If s = 0 we look at (q2- 1)-i - 

(2d+lr - t)r', and then t' = 2d+lr- t > r can be written in the above form; t 
yields the same fig . 51 

3.2.9. The blocks Bx. Let XI(7r,) ? B1UB3 and X1 ? BlaUBlb forall 
blocks of these types. Denote by Bxl the block containing XI (7i) . Assume 
7Il (i, I). 

Claim. There holds X2, Xa, Xb ? Bxl . 

Proof. If X2 E Bxl, we would need fr(h)- 0 (mod 2) for all h E H1 giving 
XI E BI . If Xa E BxI (a = a or b), we would have fta(h2,) 0 (mod 2) 
for 7, defining Xa. This implies ,2(q-1)i = 1 , 7c,(h,) = hi, and so r' I i. By 
Lemma 3.2.8, this means Xa ? Bxl. * 

As in [14, ?5.18], we have a total of 22d characters of type X1 in Bxl 
corresponding to pairs (i', j') such that (i', j') _ (i, j) (mod r). Counting 
the blocks Bxl , we exclude all (i, j) such that 

2i j (mod r), 3i 2j (mod r), 
i j (mod r), 3i j (mod r). 

If q 0 1 (mod 3), then each congruence has r - 1 solutions, as r is odd and 
3 { r, and none of the solutions occurs more than once. This gives (r - 1)2 _ 

4(r - 1) = (r - 1)(r - 5) characters 7r,, and so I (r - 1)(r - 5) blocks. If 
q =1 (mod 3), then 3 | r, so we get r - 1 solutions to 2i- j, i j, 
and r - 3 solutions to 3i j, 3i _ 2j (as in [14, ?5.18]), and thus get 
(r - 1)2 - 2(r - 1) - 2(r - 3) = (r - 3)2 characters 7o and 1 (r - 3)2 blocks. 

3.2.10. The blocks BX2. Let Bx2 be the block containing X2(7r2) for some 
X2 ? B UB3 U B2a U B2b . Assume 2- (i, j) . As in [14, ?2.4], Bx2 contains 
four characters of type X2 corresponding to the pairs 

(i, j + r'), (i + r', j), (i + r', j + r'), and (i,] j). 

We have Xa ? Bx2 for a = a and b, since otherwise, for 7, defining Xa, 
we would have 7r,(hl) 0- (mod 2), implying 7(,(h,) = Sir for some r. This 
contradicts Lemma 3.2.8. 

3.2.11. The blocks Bx0, a = a or b. Let 7r,(h,)= i define Xa(7r,), where 
i is not a multiple of r or r', and 1 < i < rr'. Denote by Bx0 the block 
containing Xa. 

The block Bx0 contains all Xa defined by i' = i + srr', 1 < s < 2d+ 1 , giving 
2d+1 characters Xa . (These all give different fi, as -i, q i, -q i are not of this 
form. For instance, if we had i _ qi (mod rr'), then (q - 1)i 0 0 (mod rr'), 
which implies i_ 0 (mod r'), a contradiction.) 

Clearly, Xb ? BXa for all Xb, since otherwise, if 7rb defines Xb, we would 
have 7(b(h) = 0 (mod 2) for all 1 :& h E Hb, giving Xb E B1 . Similarly 
Xa ? Bxb for all Xa . 

Number of blocks of this type: I(rr' - r - r' + 1) = 8(r - 1)(q - 1). 
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3.2.12. q _ -1 (mod 4). The proofs here are analogous to those for q _ I 
(mod 4). We merely exchange q + 1 for q - 1 and also the subscripts 1 and 
2, a and b, and superscripts # and *. 

4. PROOFS: DECOMPOSITION MATRICES 

4.1. Some scalar products. The following tables list some scalar products be- 
tween characters of G. We only give those scalar products we shall need in our 
proofs and which have not already been given in Appendix A of [7]. As always, 
missing entries are 0. 

(a) q 0 (mod 3) (Table (q)). 

TABLE (q) 

Char. X1i1 X12 X13 X14 X15 X16 X17 X18 

X19 0 X13 q2/9 q/3 

X190 X14 q2/9 q/3 

X19 0 X19 q2/9 q/3 q/3 

X19 0 X19 1 q2/9 q/3 q/3 

(X3_+X6) _ X22 2(q2+ 1) 2q/3 2q/3 q q/3 q q/3 

(b) q e (mod 3), e = 1, -i (Table (r)). 

TABLE (r) 

Char. Xi X12 X13 X14 X15 X16 X17 X18 

X19 0 X13 (q - -)2/9 (q - 8)/3 

X19 o X14 (q + 28)(q - 8)/9 (q - 8)/3 

X19 O X19 (q + 28)(q - 8)/9 (q - 8)/3 (q - 8)/3 

X19 0X 19 1 (q + 28)(q - 8)/9 (q - 8)/3 (q + 28)/3 

X3 0 X32 q -1 1 

4.2. The proof for the principal block B1 . We have the following relations on 
2-regular classes: 

X16 = X15- X17 + X18, 

X21 = X12 + X15 -X17, 

X22 = X11 + X15 -X17, 

X23 = X14 + X15 + X18, 

X24 = X13 + X15 + X18 . 
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If 3 = -1, we have furthermore 

X2a = X2 -X13 - X17-X18 

X2a = -XI + X14 + X17 + X18 5 

X2b = X - -X14- X17-X18 

X2b = -XII + X13 + X17 + X18, 

Xa =-XI1 + X12 - X13 + X14 = X2a + X2a 

Xb =-X11 + X12 + X13 - X14 = X2b + X2b , 

X2= X11 + X12 -X13 -X14 - 2 X17 - 2 X18 

= X2a - X2a X2b X~b 

If 3 = 1, these are replaced by 

XIa = X12 + X14 + 2 X X15-X17 + X18, 

XIa = XII + X13 + 2. Xa5 - X17 + X18, 

Xlb = X12 + X13 + 2 X X15-X17 + X18, 

Xb = X11 + X14 + 2 X15- X17 + X18, 

Xa = -X1 + X12 - X13 + X14 = XIa - XIa 

Xb = -X11 + X12 + X13 - X14 = Xlb - Xb, 

XI = X + X12 + X13 + X14 + 4 . X15 - 2 - X17 + 2 *X18 
= XIa + X'a = Xlb + Xib . 

Since X11, X12, X13, X15, X14, X1I7, and X18 are linearly independent on 2- 
regular classes, they form a basic set by Lemma 4 of [7]. Table (s) gives a list 
of scalar products, where u, v, w, x, y, and z are nonnegative integers. The 
projectives originate from Table (t) (see next page). 

TABLE (S) 

Char. (D I 2 03 04 05 06 07 D/7 08 (D9 

xli 1' 1 1 1 

X17 I q 

X18 1 q/3 

X13 1 1 U 2q/3 q 1 

X14 1 1 V 2q/3 1 q 

X15 2 1 q q+l q+1 

X12 1 X y z 1 Wq- 1 2(q2 + 1) q q 
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TABLE (t) 

Char. Origin Remarks 

qua2 X19 0 X19 XI defect 0 

(D3 X19 0 X14 X19 defect 0 

)4 X19 0 X13 X19 defect 0 

05 G-G 

06 X19 0 X19 X19 defect 0 

17 X3 0X32 only if 3{q 

)7 (X3 + X6) o X22 if 3 q, X3, X6 defect O 

(D8 1G [7, Appendix A] 

(9 1G [7, Appendix A] _ _ _ _ _ _ ~ - 
U 

1 
a _ _ _ _ _ _ _ _ _ _ 

Now 06 shows that X15 is not a constituent of (D)1I, the projective inde- 
composable corresponding to the trivial character X1I . On the other hand, by 
Fong's lemma (Theorem 6.3.86 of [10]), X13, X14, and X12 are contained 
in (DI 1 . Hence, there is just one way (1D can break up into projectives: 

.= 1, + 2. 015. 
Let <D denote the projective indecomposable character contained in 07, 

resp. (17, which has nonzero scalar product with X17. Since the decompo- 
sition matrix has only l's as elementary divisors, X17 is contained just once 
in (D. Thus, we get the set of projectives given in Table (u). We observe 
that (I11, 1), 02, ... ., )5, and 015 are a basis for the set of projectives of the 
principal block. 

TABLE (U) 

Char. 011 (D 02 (D3 0>4 015 5 ?7 V7 08 0?9 

X1l1 1 1 1 

X17 1 1 q 

X18 a 1 q/3 

X13 l b 1 2q/3 q 1 

X14 1 C 1 2q/3 1 q 

X15 d 1 1 q q+ I q+ 1 

X12 1 e x y z 1 q- 1 2(q2+ 1) q q 

Now (D is certainly not contained in 08 or 09 . It follows that (DI 5 is con- 
tained (q + 1) times in each of these. Furthermore, (DI 1 is contained once in 
each of 08 and 01 . Subtracting these from 08, respectively 19, leaves mul- 
tiples of projectives with multiplicity (q - 1) . We thus get the set of projectives 
given in Table (v). 
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TABLE (V) 

Char. (DI (I) D 2 (I?13 014 015 012 | )7 (D)7 

X17 1q 

X18 a 1 q/3 

X13 1 b 1 2q/3 

X14 1 C 1 2q/3 

X15 d 1 1 q 

X12 1 e x 1 1 1 q - 1 2(q2 + 1) 

If 3 q, then 1D is contained q times in (D7 . It follows that a = b = c = 0, 
that d < 1, and that e < 2q. This is of course trivially true in case 3 { q, by 
considering (7 . Since X16 = X15 - X17 + X18 on 2-regular classes, we must 
have that d = 1. The missing entries of the decomposition matrix are now 
filled in, using the relations given above. The tensor product X19 0 X19 shows 
that x < (q + 2)/3. If 3 does not divide q, use 07 to get the bound e < q, 
and, with x < q,the lower bound for q$12(1). If 3 1q and q > 3, we get from 
(D7 that 3e + x < 6q. This yields the lower bound for 012(1) in this case, and 
completes the proof for the principal block. 

4.3. The block B3 . 

4.3.1. The case q _ -1 (mod 3). Here we have the following relations: 

X2b =X31 -X33, 

X2b = X32 + X33, 

Xb = X31 + X32 = X2b + X2b, 

X2 = X31 - X32- 2 X33 = X2b - X2b. 

Of course, the last relation only makes sense in case 4 1 q + 1 , since otherwise, 
X2 is not contained in B3 . Since X31, X32, X33 are linearly independent on 2- 
regular classes, they form a basic set by Lemma 4 of [7]. Table (w) gives a table 
of scalar products with projective characters, with the projectives originating 
from Table (x) (see next page). 

TABLE (W) 

char. (DI (2 (D3 

X32 1 

X33 1 

X31 1 y 1 



666 GERHARD HISS AND JOSEPHINE SHAMASH 

TABLE (X) 

Char. Origin Remarks 

(Di IG~} [7, Appendix A] 

02 X19 0 X14 XI9 defect 0 

(3 G-G 

These projectives show that X32 and X33 are irreducible modulo 2. If 
4 | q + 1 , then X2 is in the block, and the last relation shows that X32 must be 
a modular constituent of X33. The tensor product X14 0 X19 yields the desired 
bound for y, and the proof is complete in this case. 

If 4 | q - 1, then the defect group of B3 is a Sylow 2-subgroup of SU3(q) . 
It is semidihedral of order 2d+2. The decomposition matrices given in [6, ? 1 1] 
now show that y = 1 and that X32 is a modular constituent of X31 . 

4.3.2. The case q -1 (mod 3). Here we have the following relations: 
Xia = X31 + X33, 

Xa =X32 + X33, 

Xa = X31-X32 = XIa - Xla 

XI = X31 + X32 + 2 * X33 = Xia + Xla. 

Of course, the last relation only makes sense if 4 | q - 1 , since otherwise XI 
is not contained in B3. Since X31, X32, X33 are linearly independent on 2- 
regular classes, they form a basic set by Lemma 4 of [7]. Table (y) gives a table 
of scalar products with projective characters, with the projectives originating 
from Table (z). 

TABLE (y) 

char. (1 2 03 

X32 I 

X33 2 1 

X31 1 x 1 

TABLE (Z) 

Char. Origin Remarks 

(DI 1G [7, Appendix A] 

02 X19 0 X14 XI9 defect 0 

03 G-G 

The defect group of B3 is contained in SL3 (q). If 4 | q + 1, this defect 
group is semidihedral of order 2d+2. In [6, ? 11], Erdmann enumerates the 
possible decomposition matrices of blocks with semidihedral defect group and 
three irreducible Brauer characters. From those results it follows that the inde- 
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composable (03 is contained x times in 1)2, and that (1)2 - x()3) is contained 
twice in (DI . 

Now let 4 | q - 1 . We shall show that X33 remains irreducible on reduction 
modulo 2. This will complete the proof, since the relation for Xa then shows 
that there is only one way (DI can break up into indecomposables. Let H = 
X be the split maximal torus, B a Borel subgroup containing H, and N = 

NG(H) the Cartan subgroup of G. Let A be one of the two ordinary irreducible 
characters of H whose Harish-Chandra induction is X31 + X32 + 2X33. Let S 
denote the Sylow 2-subgroup of H. Since 4 q- 1 , we have CG(S) = H. Since 
NG(S) normalizes CG(S), we certainly have NG(S) = N. Also, NB(S) = H. 

Next we choose a splitting 2-modular system (K, R, k). As usual, R de- 
notes a rank-1 complete discrete valuation ring with field of fractions K and 
residue class field k of characteristic 2. Let I be an RH-lattice with char- 
acter A, and let L denote the inflation of / to B. By [9, Theorem 2.18], 1 
is extendible to its inertia subgroup T in N. Since T/H is isomorphic to 
a symmetric group on three letters, IT is a direct sum of three indecompos- 
able modules. Each of these has dimension 2 and vertex S, and two of these 
are isomorphic. By Green's theorem, IN is the direct sum of three indecom- 
posable modules of dimension 4 and vertex S, two of which are isomorphic. 
Furthermore, every indecomposable direct summand of IN is self-dual. 

We now apply Burry's generalized version of Green correspondence (see [1, 
Theorem 4.2(a)]) to LG. It states that the number of direct summands of LG 
with vertex S (counting multiplicities) is the same as the number of direct 
summands with vertex S in (LNB(s))NG(S) = (LH)N = IN . Hence, LG = X (D 
Y ? Y, where X has character X31 + X32 and Y has character X33 . 

Now Y is certainly self-dual, and so is Y, the reduction of Y modulo 2. 
Since L is a trivial source module (being a direct summand of IB), Y has 
trivial source, and so all its endomorphisms are liftable (see [11, Theorem II 
12.4]). Every irreducible kG-module in B3 is self-dual, since it has a real- 
valued Brauer character. From this, and the fact that Y is self-dual with a 
1-dimensional endomorphism ring, it follows that Y is irreducible. This com- 
pletes the proof. 

4.4 The blocks Bia and BIb. The proof for BIb is exactly the same as that 
for Bia, so we only give the latter. The characters of type XIa which lie in the 
block have the same restriction to the 2-regular classes. The same is true for 
the characters of type Xia. Furthermore, we have the following relations on 
2-regular classes: XI = XIa + X'a and Xa = Xia - X'a . We have projectives 

Char. | I (D2 

la 

Xia 1 1 

Here, (DI originates from 1G{b} (divided by 3q + 3 (see [7, p. 349])) and 
02 from the Gelfand-Graev character. The relations show that each of these 
projectives must be indecomposable, and we are finished with the proof. 
4.5. The blocks B2a and B2b . The proofs here are similar to the ones above. 
In place of 1G we have to take 1G U b} fa 
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APPENDIX 

TABLE 1 (a) 
q _1 (mod 4) 

G2(q) = Central char. on 2'-elements (mod 2) 
q - 1 = 2d r, q + 1 = 2r', r and r' odd 

defect. 2d + 2 2d + 2 2d + 1 3 2d + 2 2d + I d + 2 2 

2, 31 q (il W13 I05 W17 W21 .022 W31 . 032 031 . W32 033 

G2(q) W12 (014 (016 (018 023 (024 W33 

0 

U2 0 

U3 0 

U4 0 

U5 0 

U6 0 

k3 0 I,(k3) 0 1(k3)_0 *l (k3)_0 irt(k3) 0 

c= I k3, 0 

k32 k3 3, 0 

k3 0 b2(k3) - 70+ 

c=-l Ick3, 0 

k32, k3,3, 0 

hia 0 Il(ha) 0Q It(hia)E 0 A x(hia) EQ ft(hia) 

hla, I O 

hlb 0 TI (hlb) -Q II(h I Qb)Q 0 ( lb) Q I lb(h,6) 0 bib) EQ 

hb,, 0 

h2a 0 2(h2.) - Q bt(h2a) )0 

h2a I O 0 

h2b 0 2(h2b) _0 it +(h2b) it+(h2b) 

h2b, I 0 

h/ 0 T, (hi )O T (h, ) _ O r(h )-0 *t (hi) 0 

A, Q~~~~~~~~~~~~~~~~~~~~~ h2 O 12(h2) - 2 n2(2) - 

ha ? 0 

hb ? t+ (hb) EQ 

h3 O 

h6 ? ? ? ? ? ? ? ? 
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TABLE 1 (b) 
q _1 (mod 4) 

G2(q) = Central char. on 2'-elements (mod 2) 
q - 1=2d * r, q + 1 = 2r', r and r' odd 

defect: 2d 2 d + I d + 2 2d+1 d + I d + 2 2d+ 1 

t 1 e= 1 
a1 1 k3 

102b 
1 

n0kb (O' 

U5 

k32 

3 h = I (k3k A a (W fb2(k3) a 
n (k3) *k(k3)3) 

k32 k3 3, 

ht n(hla ) ira 
(hla) na(hia) 

( ) (hla) 
_ 7rh( 0 

hia I 

#a (h 1 a) la~~f~h~) 

h1,, 7ll(h1b) I(lh1) 
E 

7T((h1 ) kt,(lh1) n 

h2a 2 ( h2a ) a ia(h2a) ir*(hh2a) 

hia, I 

A ir~~~~~~~~~~~~~~~~~~~h~~~~a hl)hIhI )l) 

ih *b Jl (h (hb) ir lb 0 tb(h, )r (hnh~) 

hla )T (hh a )t (h ~aah )t (h~hha) 

h2 7T2(h2) 

ha ira(ha) *f (ha) 

h6 10 0 0 0 0 0 0 0 
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TABLE 2 (a) 
q -l - (mod 4) 

G2(q) = Central char. on 2'-elements (mod 2) 
q-1=2r', q+l=2d r, r and r' odd 

defect: 2d+ 2 2d + 2 2d + 1 3 2d + 2 2d + I d + 2 2 

2, 3 f q (i (013 (017 015 W021 . 022 W031 , (032 (031, (032 (033 

d(X33) = 2d 

G2(q) (012 (014 (018 016 (023, (024 (033 

, I '- . 

,l 0 

U2 0 

U43 0 

i. 4 0 

i45 0 

U6 0 

.k O si (k3) _ fir+(k3)_O 

e=I k3 0 

k32, k3,3,, 0 

k3 0 b2(k3)_O b2(k3) - _ _ O ix(k3)O t (k3) 0 

e=-_ k3, 0 

k32, k3 3,, 0 

O0 11 (hi.)-O T+(hl,) r(T(ha) 

hla, I O 

hlb 0 11(hb) 0 oi+(hlb) 0 

_ _ _ _ _ _ It 6 0 

h2a 0 12(h2a) 0 12(h2.) 0 fitx(h2a) _O t7+(h2a) 0 fa(h2a) 

h2a, I 0 

h2b 0 i2(hb) 0 I2(h2b)0 (h2b)O fiT (h2b) 

t2b6, 0 i+(ht,) 0 

hi 0 

h2 0 12(/t2)O i2h)- ft2x(2)-O fi/2+2) 0 

ha 0 ia+(ha) 0 

0 

_ _ _ _ /1h 3 0 . 

0 0 0 0 0 0 00 
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TABLE 2 (b) 
q - l (mod 4) 

G2(q) = Central char. on 2'-elements (mod 2) 
q - 1 = 2r', q + 1 = 2d * r, r and r' odd 

defect: 2 2d d + I d + 2 2d+ I d + I d + 2 2d+ I 

2, 3 q C J W)2 Wa (C1a W Ia W2a, (2a (Oh w h, (h (J2h *2h 

113 

U4 

115 

U6 

1k3 it Igk3) irh(k3) ir"(k3) 

c21 &k31 

k32 .3.1 

/13 tr2(k3) iTa(k3) ir*(k3) ir,*(k3) iK5(k3) 

c = -I k31 

k32 k3 3 _ 

hia (rlh(haa) ) a(hla) ira(hla) 

. = ha I 

_ I i t I ( hi h ) i7h ( h I h) ith ( h I h ) 

hr a 7f2(h2ha) ita(h,,) i2a(h2a) (h -) _ (h h(h, a 0 

/Ia h) - _ 

h2b It2(h, 

hl 0t (h 0 0 00 

h, it-)(h, ), ar (h, ) ,* (h,) 

ha ra ( ha ) Tra(ha )_ 

_hh 7rh(hh ) ir#(hh ) 

_ = h 1 _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_3 

h6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, 0h ) 
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